
Citation: Mei, S.; Liu, M.; Kudreyko,

A.; Cattani, P.; Baikov, D.; Villecco, F.

Bendlet Transform Based Adaptive

Denoising Method for Microsection

Images. Entropy 2022, 24, 869.

https://doi.org/10.3390/e24070869

Academic Editor: Amelia

Carolina Sparavigna

Received: 14 April 2022

Accepted: 22 June 2022

Published: 24 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Bendlet Transform Based Adaptive Denoising Method for
Microsection Images
Shuli Mei 1 , Meng Liu 1, Aleksey Kudreyko 2 , Piercarlo Cattani 3, Denis Baikov 4 and Francesco Villecco 5,*

1 College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China;
meishuli@163.com (S.M.); bynd_lm@163.com (M.L.)

2 Department of Medical Physics and Informatics, Bashkir State Medical University, Lenina Str. 3,
450008 Ufa, Russia; akudreyko@bashgmu.ru

3 Department of Computer, Control and Management Engineering, University of Rome “La Sapienza”,
Via Ariosto 25, 00185 Roma, Italy; cattani.1642354@studenti.uniroma1.it

4 Department of Surgery, Transplantology and Radiation Diagnostics, Bashkir State Medical University,
Lenina Str. 3, 450008 Ufa, Russia; d-baikov@mail.ru

5 Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
* Correspondence: fvillecco@unisa.it

Abstract: Magnetic resonance imaging (MRI) plays an important role in disease diagnosis. The noise
that appears in MRI images is commonly governed by a Rician distribution. The bendlets system
is a second-order shearlet transform with bent elements. Thus, the bendlets system is a powerful
tool with which to represent images with curve contours, such as the brain MRI images, sparsely.
By means of the characteristic of bendlets, an adaptive denoising method for microsection images
with Rician noise is proposed. In this method, the curve contour and texture can be identified as
low-frequency components, which is not the case with other methods, such as the wavelet, shearlet,
and so on. It is well known that the Rician noise belongs to a high-frequency channel, so it can be
easily removed without blurring the clarity of the contour. Compared with other algorithms, such
as the shearlet transform, block matching 3D, bilateral filtering, and Wiener filtering, the values of
Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) obtained by the
proposed method are better than those of other methods.

Keywords: Rician noises; magnetic resonance imaging; bendlet transform; adaptive algorithm

1. Introduction

Computed tomography imaging represents an indispensable source of information
for medical diagnosis. It uses the Radon transform to reconstruct the distribution of cross-
sectional tissue structures through X-ray imaging [1]. The pixel itself is displayed according
to the mean attenuation of the tissue. Any pathological changes in the tissue(s) result
in another grayscale image. However, due to the optical quantum effect, the detailed
information of CT image acquisition will be covered by particle noise, resulting in a high
level of noise in the reconstructed image, which seriously affects feature extraction and
segmentation of the target image and multi-source image fusion [2–4]. MRI uses the body’s
natural magnetic properties to produce detailed images from any part of the body. For
imaging purposes, the hydrogen nucleus is used because of its abundance in water and fat.
If any pathology occurs, the proton density changes accordingly. Noise in the MRI is caused
by the thermally-driven Brownian motion of electrons within the body’s conducting tissue
and within the receiving coil itself. This noise is also known as Johnson noise. In middle
and high-strength fields, the patient will be a dominant noise source, unless the coil is very
small. The patient noise electromotive force is caused by random radiofrequency currents
circulating around a number of eddy current loops, thereby producing randomly varying
magnetic fields which induce noise voltages in the RF receiving coil [5]. Thus, image
denoising algorithms have important practical implications for both imaging techniques.
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Typical algorithms of noise reduction often result in blurred edge, texture, and other
image details. The rapid development of the convolutional neural network (CNN) provides
new means for medical image processing and shows great potential [6]. However, the
feature extraction capability of the CNN is limited by the dataset, hardware resources, and
running time [7]. Only when the dataset is large enough is the network layer deep enough,
and only the number of iterations is large enough can the network achieve effective noise
reduction [8–10]. Deledalle et al. [11] showed that patches’ statistics followed a higher
kurtosis distribution compared with the Gaussian distribution. However, patch priors
are mainly limited to multivariate Gaussian or Gaussian mixture models because it is
difficult to obtain estimates by them. Therefore, the prior knowledge of multi-scale mixed
noise is not considered, and multiple iterations are needed to find the optimal filtering
parameters for the noise image and the pre-filtered image. Pathak et al. [12] proposed a
data fidelity term describing noise distribution in low-dose X-ray CT images by using a
minimal likelihood logarithm. They proposed a new filter using a variational framework
as the energy minimization function, which solved the data fidelity term and mixed
noise problems in the sinusoidal graph data at the same time. Although this framework
effectively preserves the edge of the reconstructed image, it also produces fewer gradient
inversion artifacts. Xu et al. [13] proposed a fast-blind noise reduction algorithm, iQA-
FBDA, which is based on image quality perception for Gaussian pulse mixed noise. It can
effectively alleviate the retention of the above details and improve the calculation efficiency.
Lili constructed multi-scale wavelet interpolation operators based on Shannon-Cosine
wavelet [14] to achieve sparse expression of images and remove pepper and salt noise. This
precise wavelet integration method based on the Shannon–Cosine wavelet operator could
only eliminate Gaussian noise and salt and pepper noise of images; its elimination of Rician
noise was not proven. Nevertheless, all above filtering methods do not take full advantage
of the closed-loop curve profile structure appearing in images, as shown in Figure 1. In
most cases, the contours and textures with large curvature are often identified as the noise
in other methods. The bendlet transform can overcome this shortcoming, as it can represent
the curve sparsely.
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contour or curvature. The inability to identify the texture edge contour during noise 
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Figure 1. An MRI image with noise.

In order to show the feasibility of our method, we will focus on the details, edges,
contours, and textures of several MRIs. Different tissue structures have different texture
characteristics in CT/MRI, including not only typical fractal structures but also multi-layer
nested annular closed contours. Muscle tissue shows an obvious regular texture with
a clear texture edge. The surface layer of most tissues is a curved structure, which is
smoothly curved. Each tissue structure contains rich high-frequency information. Due
to this high diversity, the existing algorithms cannot accurately approximate the curve
contour or curvature. The inability to identify the texture edge contour during noise reduc-
tion effectively and inevitably leads to failure to remove this high-frequency information,
resulting in blurred contours [15]. The bendlets function has many excellent numerical
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properties, such as compact support, anisotropy, multi-scaling, shearing, and bending
properties [16]. The curvature parameter can effectively identify the closed contour and
remove the high-frequency noise in images. In addition, artifacts cannot be introduced into
the processed images.

This study is organized as follows. Section 2 describes a preliminary review and
fundamental experimental analysis. Section 3 firstly analyzes the advantages of using the
bendlet transform algorithm to reduce the noise of MRIs and then compares and analyzes
the noise reduction results of different algorithms to determine this study’s algorithm’s
advantages. The concluding remarks are outlined in Section 4.

2. Preliminary Description and Methodological Framework
2.1. Framework of the Adaptive Noise Reduction Method Model

The overall flow of the Rician noise adaptive denoising method for microscopic images
based on bendlet transform is shown in Figure 2. First, acquire a tomographic image. Then,
the image description basis functions can be extended from Hilbert space to Banach space
through bendlet transformation. The bendlet transform can identify the texture features of
the target object in the image, especially the discontinuous texture and contour curvature
caused by damage, and better approximate the texture and edge areas with rich high-
frequency information. Then, the low-frequency information coefficients are reconstructed
by the inverse bendlet transform to restore the denoised image, which not only preserves
the orientation of the texture but also reduces the artifacts caused by shearlets in smooth
regions. Finally, the method’s effectiveness is objectively demonstrated by comparing the
five filtering algorithms with different image quality metrics.
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Figure 2. The framework of the adaptive noise reduction method model.

2.2. Preliminary Remarks on Bendlets

Curvature classification in an image is a difficult task for wavelets and their general-
izations, such as shearlets [17]. Although the shearlet transform can be used to detect the
local direction, it cannot identify the curvature classification information of non-continuous
multi-dimensional signals. In order to overcome the limitation, Lessig and the collaborators
proposed a novel wavelet function named bendlet, which can describe the position of the
discontinuous points, and direction and curvature of the high dimensional signal. The
bendlet is developed on the basis of the shearlets, in which the curvature parameter is
supplied in addition to the properties that the shearlets possess, such as the anisotropic
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scaling, translation, shearing, and so on. Therefore, the bendlets system is a powerful tool
with which to represent the curve contour and texture. The shape of the bendlet function is
shown in Figure 3.

φa,α,s,t(x) = a−(1+α)/2φ(A−1B−1(x− t)), (1)

where a ∈ R+ is the scale parameter, α ∈ [0, 1], t ∈ R2 is the translation, the anisotropic
scale matrix is A = (a, 0; 0, aα), α is the scale parameter, α = 1/2 expresses the parabolic
scaling, and α = 1 is corresponding the isotropy scaling. B = (1, s; 0, 1) is the bend and
shear transform matrix. The scale parameter s can be expressed as

s =
l

∑
m=1

rmym−1, r = (r1, r2, . . . , rl)
T ∈ Rl (2)

where l ∈ N; x = (x, y) is the pixel position. It is easy to find that the bendlet function
φa,α,s,t(x) will degenerate into the shearlet function as α = 1/2; l = 1 in order to obtain the
edge information, which includes position, normal direction, and curvature. We should
consider 4 cases, which are depicted in Figure 4.
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Figure 4. Classification of the bendlet transform: (a) translation parameter t is not on the edge
curve. (b) t is on the edge curve and s is the boundary normal. (c) t is on the edge curve and s
perpendicular to the normal at t and not corresponding to the curvature. (d) t is on the edge curve
and s is perpendicular to the normal at t and not corresponding to the curvature.

We used circles with different radii measured in the unit square domain as input
signals. When α = 0.5, the attenuation rate of Bendlet transform is a function of curvature.
The experimental results are shown below.

As shown in Figure 5, it can be seen that the expected curvature sensitivity of the
attenuation rate is a function of the bending parameters. For a small radius and large
curvature, only the coefficients of the components with corresponding large bending decay
slowly. With the increase in radius, the curvature decreases, and the smaller the bending
parameters, the slower the curve decays.
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image of noise reduction image.

Figure 6a is the test image with the noise, and Figure 6b is the reconstructed image
after bendlet transformation. As can be seen in Figure 6b, curvature information is added
on the basis of orientation sensitivity so that the low-frequency coefficient can reflect more
texture details after image decomposition, and the high-frequency coefficient can better
capture the changes in image edge details. Observe the 3D energy diagram of the test image
after denoising in Figure 6c. It can be seen that its energy distribution range is relatively
concentrated, indicating that the texture curvature of the test image is rich and the details
of the curve with smooth boundaries can also be accurately identified and processed by
bendlet transformation.

3. Bendlet Transform for Image Denoising
3.1. Adaptive and Multi-Threshold Image Denoising Algorithm

The bendlet transform can accurately identify the details of curves with rich texture
curvature and smooth boundaries for test images, indicating that features extracted from
the bendlet algorithm’s band are more efficient than other image representation systems’
features. The adaptive iterative process of brain MRI denoising using the bendlet transform
algorithm is shown in Figure 7, and the final results are shown in Figure 8. PSNR and SSIM
were calculated to verify the effectiveness of the algorithm [18].

As shown in Figure 8, the original MIR image was de-noised by bendlets, and the
PSNR and SSIM values after denoising were 41.41 dB and 0.62, respectively. Visually,
the edge and texture details of the denoised image are clear. As can be seen in the 3D
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energy diagram in Figure 8d, irregular high-frequency mutation information was effectively
removed from the image. The above analysis shows that the biological section image after
the bendlet transformation and filtering not only has a clear appearance, but also lost fewer
details and has strong similarity with the structure of the original image.
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3.2. Bendlet Algorithm and Other Denoising Methods

To better reflect the advantages of the bendlet transform in MIR slice image denois-
ing, we compare the bendlet transform with shearlets transform, bilateral filters [19],
block-matching and three-dimensional filtering (BM3D) [20], the Wiener filter, and other



Entropy 2022, 24, 869 7 of 13

denoising methods. Among them, the bilateral filter kernel can smoothly noise reduce
while preserving edges well. BM3D is an effective combination of the characteristics of
the nonlocal denoising algorithm and wavelet transform algorithm, and it is also one of
the best image denoising methods at present. Hot images and Jet images can well reflect
the distribution of high-frequency detail information in the image, so the degree of noise
reduction in MIR can be observed. Figure 9 below shows the noise reduction results of MRI
using different algorithms.
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Figure 9. Comparison of denoising methods for MRI with noise. (a) Comparison of MRI noise
reduction images with different methods. (b) Gray scale image of partially amplified MRI denoising
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In Figure 9a, observations of hot and Jet denoising images show that bendlet, shearlt,
and BM3D algorithms reduce more noise points after denoising, and gray images show
that shearlet images reduce image resolution. By observing the local magnified images of
Figure 9b,c, it can be known that the shearlet algorithm and BM3D can effectively identify
the texture edges. The boundaries are clear, but the texture structure is different from the
original image. The denoised image using bilateral filtering algorithm has fuzzy boundaries,
and the denoising results of texture structure area are similar to the original image. After
using Wiener filtering algorithm to reduce noise, the problem of data distortion caused
by inverse transformation is prominent whether for edge recognition or texture structure
reconstruction. By observing the denoising results of bendlet algorithm, compared with
the original slice image, we can see that the texture and edges have high similarity to
the originals.

The objective evaluation methods of PSNR, SNR, and mean squared error (MSE) use
the error of the reconstructed image deviating from the original image to measure the
quality of image reconstruction [21]. However, the above evaluation indicators do not
consider the local visual factors of the human eye. Comparing the average pixel value of the
original image and the image after noise reduction can reflect the grayscale fidelity result of
the image after noise reduction to a certain extent. Variance inflation factor (VIF) measures
the quality of denoised images through mutual information and expands the connection
between the image and the human eye in terms of information fidelity; SSIM is based on the
basis of structural information and comprehensively compares the reconstructed image and
the original image from three aspects of brightness, contrast, and structure. The similarity
between them makes up for the shortcoming that the VIF method is not sensitive to the
structural information of the image. The calculation results of the objective evaluation
indicators of noise reduction for different filtering algorithms are shown in Table 1.

Table 1. Noise reduction index results for different filtering algorithms.

Filtering Algorithm SSIM PSNR SNR MSE AVE VIF TIME

Bendlets

0.9998 44.8570 34.9154 2.1251 47.9395 0.7655 8.281
0.9998 39.4094 29.7139 7.4497 49.4498 0.5962 8.968
0.9997 45.3965 34.5704 6.5352 44.6905 0.5802 8.615
0.9988 46.7255 36.1813 5.2032 40.914 0.6999 8.096
0.9997 44.2511 34.4531 8.8191 51.932 0.7475 8.918

Shearlets

0.9981 36.4608 26.5192 14.6894 46.9211 0.4348 8.852
0.9990 38.5649 28.8694 9.0487 48.9580 0.5199 7.875
0.9987 38.786 27.960 8.5997 44.3568 0.4583 7.342
0.9990 39.5702 29.0260 7.1789 40.2439 0.4647 8.521
0.9987 37.8569 28.0589 10.651 51.7194 0.4723 8.334

BM3D

0.9995 39.6745 32.733 7.8692 48.0949 0.7414 31.955
0.9995 38.5649 28.8694 9.0487 48.958 0.5199 34.357
0.9993 39.9782 29.1522 6.8769 44.686 0.5502 44.051
0.9996 40.9681 30.4238 4.3821 40.9864 0.6302 36.264
0.9993 38.6766 28.8786 7.4433 52.0019 0.5047 33.384

Bilateral

0.9983 35.8376 25.8961 16.9559 47.8985 0.5273 0.377
0.9984 39.3879 29.6924 7.4867 49.5787 0.616 0.376
0.9983 39.3889 28.5629 7.485 44.6782 0.5003 0.368
0.9987 42.0895 31.5453 4.0191 40.9828 0.6139 0.367
0.9982 38.8100 29.0120 8.5522 51.9804 0.5931 0.372

Wiener

0.9980 35.7438 25.8023 17.326 47.9710 0.6026 0.260
0.9980 35.4473 25.7518 18.5501 49.5007 0.6028 0.429
0.9974 35.6611 24.8350 17.6593 44.7101 0.6258 0.303
0.9977 35.4446 24.9003 18.5619 40.9344 0.5786 0.330
0.9976 35.2431 25.4451 19.4434 51.9718 0.6268 0.287
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The following conclusions can be drawn from the objective measurement indicators in
Table 1. Take the set of image data in Table 1 as an example for analysis. It can be seen in
the calculation results of the AVE value that the average pixel value of the MRI after noise
reduction by the bendlet algorithm is 47.9395, and the gray average value closest to the
original image is 47.9490 by the bendlets algorithm. This shows that the bendlet algorithm
has the least influence on the gray value of the image before and after denoising.

PSNR is based on the error between the corresponding pixels, that is, based on the
error-sensitive image quality evaluation index. The PSNR values of the five filtering
algorithms in the table are 44.85, 36.46, 39.67, 35.84, and 35.74 db; and the SNR values are
34.91, 26.46, 32.73, 25.90, and 25.80, respectively. This indicates that the amounts of error in
reconstructed images from different filtering algorithms compared to the original image
increased in this order: bendlet, BM3D, bilateral filtering, shearlet transform, and median
filtering. The calculation results of MES values show the accuracies of these algorithms,
which are consistent with the PSNR values. The minimum MES value of the bendlet
algorithm is 2.12, indicating that the reconstructed image has the strongest correlation
with the original image. The computation time (t) was found in seconds using MATLAB
2020a. As can be seen in Table 1, the BM3D method had the longest running time. Bilateral
and Wiener methods ran faster; however, they performed poorly in both subjective and
objective evaluations. This method takes longer to compute than bendlets and shearlets,
but produced better visual features. Therefore, the computation time of the proposed
method is acceptable. The SSIM value and VIF value also verified the objectivity of the
appearance. The SSMI values of the five algorithms are all over 0.99. This shows that the
images before and after denoising have strong structural similarity, but it cannot highlight
which algorithm is the best. After the curvature parameter was increased in the bendlet
algorithm, the texture with rich curvature information in the MRI imaging and the nested
annular closed contour in the smooth edge region were accurately approximated, and the
curvatures of the edge contour and texture were also accurately classified. Therefore, the
bendlet transform is suitable for texture-preserving noise reduction.

MRI can distinguish white matter from gray matter, so it can diagnose cerebral
aneurysms and tumors, head trauma, and other soft tissue injuries and lesions. In MRIs, the
locations of gliomas are nearly impossible to find because they invade nearly all locations in
the brain in various shapes, sizes, and heterogeneous growth patterns. Gliomas appear very
similar to other diseases in the MRIs (stroke or inflammation, etc.), and glioma cells are tan-
gled with surrounding tissue, resulting in glioma images with diffuse borders, etc. [22]. In
order to better identify the glial tumor areas in MRI images, this study mainly used bendlet
transform to make the images of glioma disease in the brain better retain the definition of
texture of edges after denoising, and improved the efficiency of the identification of gliomas
in the brain. When MRI is obtained, many high-frequency noises will be generated to
cover the texture and contour information of the lesion region [23], as shown in Figure 10a.
Therefore, in the process of image fusion, the textured structure is prone to being incorrectly
classified in the image without denoising processing, which makes the display of lesion
edges not ideal, as shown in Figure 10b.

The image in Figure 10b fails to meet the requirement of high-precision marking of a
target area. The results after the original MIR image is denoised by changes in bendlets are
shown in Figure 11.

MRIs denoised by bendlets can show soft tissue structures more accurately than
original MRIs, and tumor boundary markers are clearer in areas where the original
lesions are not clearly or accurately displayed, as shown in Figure 11. By comparing
Figures 10b and 11b, it can be seen that after denoising by bendlets, the misjudgment of
classification is reduced and the accuracy of tumor area identification is improved. The
results show that this method can display lesions more clearly, and is helpful for classifying
various structures in MRI more accurately, so as to improve the efficiency of CT/MRI fusion
and improve the accuracy of lesion target contouring.
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4. Discussion

Based on the theory of shearlet transform and its inverse transform, we applied the
bendlet algorithm based on the second-order shearlet transform to reduce the noise in
view of the shortcomings of the traditional transform domain denoising algorithm, and
realized the texture-preserving denoising of magnetic resonance images [24]. The bendlet
transform can identify the texture characteristics of the target object in the image, especially
the discontinuous texture and contour curvature caused by damage. The filtering effect
is superior to that of the traditional algorithm, and it produces a clearer image. Multiple
objective evaluation indexes, such as PSNR, SSIM, MSE, SNR, VIF, and time, show the
superiority of our method over the traditional wavelet domain denoising algorithm and
the shearlet transform denoising algorithm.
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5. Conclusions

As a second-order shearlet system, the bendlets system can be employed to represent
an object with a curve contour sparsely. The edges and texture in the images are no longer
viewed as the high-frequency components in the bendlets system, which is quite different
from the common wavelets system. Meanwhile, the noise is still viewed as a high-frequency
component, as it is not in the form of continuous curves. Therefore, we can distinguish
the noises from the edges, textures, and contours appearing in the MRI images by means
of bendlet transform. This is the reason why the proposed method can remove the noise
in MRI images, and the textures can be preserved perfectly. The results of the numerical
experiments also illustrate this point. Compared with the other five kinds of filtering
algorithm—the shearlet transform, bilateral filtering, BM3D, median filtering, and Wiener
filtering—the proposed algorithm has significant advantages and can effectively remove
the noise from the MRI images. The presented images were obtained from the people
suspected of having space-occupying lesions. However, we decided to not discuss the
diagnoses because the main aim of this paper was to show the computational performance
of bendlets in medical image analysis.
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