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A B S T R A C T   

Cracking gas compressor (CGC) is a complex equipment used in ethylene production facilities. For the reliable 
and safe operation of CGC, the prediction of its remaining useful life (RUL) of relevance. The degradation process 
of a CGC from a normal state to a failure state has long-range dependence (LRD) with nonlinear and multifractal 
features. Concurrently, the increment of the degradation process obeys a non-Gaussian distribution. In this study, 
a degradation model for RUL prediction of CGC is developed. The model is based on a nonlinear drift function 
and Linear Multifractional Levy Stable Motion (LMSM). The drift function describes the nonlinear characteristics 
of the degradation process, whereas the LMSM allows accounting for its LRD, multifractal and non-Gaussian 
characteristics. The LRD features reflect the slowness of the degradation process, the multifractional features 
allow capturing local irregularities due to degenerate data fluctuations, and can specifically describe degenerate 
sequences. Finally, a RUL prediction framework for CGC is proposed and, then, verified with real observation 
data collected from an operating CGC.   

1. Introduction 

1.1. Background and significance of work 

Сracked-gas compressor is one of the most critical components of 
ethylene plants [1]. During the operation of CGC, various problems 
might be encountered, including coking caused by unsaturated hydro-
carbon polymerization, erosion and wear of high-pressure separators, 
corrosion and leakage of sealing balance pipe flange, turbine scaling etc. 
[2,3]. These problems can lead to ethylene production shutdown and 
even casualties. Currently, the CGC is equipped with various sensors to 
monitor temperature, pressure, flow, liquid level and other parameters. 
These parameters are not only used on-site for process monitoring and 
control, but can also be transmitted to the control center for the elabo-
ration for detecting process anomalies and for predicting anomalous 
patterns trends. When these parameters exceed certain threshold 
values, the interlocking shutdown is activated to prevent CGC failure [4, 
5]. In this context, accurate prediction of RUL can be used to effectivity 
guide system pre-maintenance for increasing CGC reliability and safety 
of operation [6]. 

1.2. Literature review of statistical model-based approaches 

A model is used to describe the uncertainty of the CGC degradation 
process and its effect on RUL prediction [7]. The statistical model-based 
approach amounts to fitting observed values onto the random process 
model to estimate its parameters. The variance of the model parameters 
describes the uncertainty caused by the limited statistics [8]. 

A degradation model with random coefficients has been used to 
predict the uncertainty in mechanical degradation [9,10]. The Gamma 
process model [11,12] has also been used, where the increments of the 
degenerate process at disjoint time intervals are assumed independent 
random variables following a Gamma distribution. The Wiener process 
model [13–15] is expressed as a drift term plus a diffusion term driven 
by Brownian motion, and has been used in stochastic degradation pro-
cess models. The Inverse Gaussian process model [16,17] assumes that 
mechanical degradation processes have independent increments and 
follow an Inverse Gaussian distribution. A Markov model [18,19] as-
sumes that the mechanical degradation process transitions occur in a in 
finite state space and according to the Markov property. All these models 
refer to a particular distribution, and have the Markov property: future 
states depend only on the current state, independent of past behavior. 
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However, this property is not always valid in practical applications. 
Non-Markov models reflect the fact that the future state not only 

depends on the current state, but it is related to previous states, that is, 
the Long-Range dependence (LRD) feature. Gaussian and non-Gaussian 
models can be developed according to the probability distribution of the 
random noise in the model. The Gaussian models assume that the noise 
distribution obeys normal distribution. Such models include the gener-
alized Cauchy method (GC) [20,21] and the fractional Brownian motion 
(FBM) models [22,23]. The models are limited to the degradation pro-
cess with small fluctuation range of data and are not valid for the heavy 
tail phenomenon. The non-Gaussian linear fractional Levy motion 
(LFSM) models [24,25], on the contrary, allow capturing the heavy-tail 
characteristics in the degradation process tail parameter α. However, 
LFSM is a phenomenon of global irregularity characterized by a constant 
Hurst index. In addition, LSTM recurrent neural network (RNN) [26,27] 
also has LRD characteristics, but LSTM-RNN, like any neural network, 
needs sufficient data for training. 

1.3. Formulation of the problem of interest for this study 

In practice, operating conditions and ambient noise will inevitably 
change in time. Some researchers have carried out research on RUL 
prediction for equipment with changing operating conditions, such as 
the relaxation effect of battery [28,29], slag skin effect of blast furnace 
[30,31], dynamic operation of heavy machine tools [32], etc. The CGC 
operating conditions remain the same but the external environmental 
noise changes, so the degradation process trend changes due to the 
changes of operating conditions leading to local irregularities in the 
fluctuations. For more realistic modeling, a degradation model driven by 
LMSM [33,34,35] is proposed to predict the local irregular character-
istics of the CGC degradation process. LMSM has LRD [36] and 
non-Gaussian characteristics. The LRD feature takes into account the 
time slowness of the CGC degradation process and the non-Gaussian 
feature describes the high jumps in data fluctuation of the CGC degra-
dation process. In addition, When the tail parameter α = 2, the LMSM 
model degenerates into a Gaussian model and when the tail parameter 0 
< α < 2, LMSM is a non-Gaussian model. Therefore, the LFSM model 
can be flexibly applied to different situations according to the value of 
the tail parameter α [37]. 

1.4. Contributions 

For the RUL prediction of CGC, a degradation model driven by the 
nonlinear drift function and LMSM diffusion term is developed. The 
nonlinear drift function predicts the nonlinear deterministic global trend 
and the LMSM describes the LRD, multifractal and non-Gaussian char-
acteristics of the degradation process. The specific contributions of the 

work presented in the paper are as follows: the multifractional, LRD and 
non-Gaussian characteristics of LMSM are proved. Through the defini-
tion of derivability, it is deduced that the multifractional characteristic 
of a LMSM sequence is determined by both global min

t∈I
H(t) − 1

α and local 

variables H(t0) − 1
α; the ability to describe the local irregularity of 

degenerate processes is proved; based on whether the integral kernel of 
LMSM is a constant, the LRD condition is deduced as H(t) > 1

α; finally, 
the integral form of LMSM is discretized and, according to the stability 
law [38], LMSM is shown to obey Levy stable distribution and have 
non-Gaussian characteristic. 

To calculate the RUL of the CGC, the following work is done. Firstly, 
the self-similar parameters of LMSM are derived by self-similar defini-
tion [39]. Secondly, according to the self-similar parameters, Maruyama 
Parameter [40] and Levy linear operation rules [41], the specific form of 
incremental distribution of LMSM degradation model is derived. Finally, 
because there is no explicit probability density function (PDF) expres-
sion for Levy stable distribution [42], RUL cannot be calculated using 
the weak convergence definition [43,44]. Then, based on Monte Carlo 
simulation [45] and previous derivations, this paper proposes an algo-
rithm to calculate the RUL of a CGC. 

1.5. Practical application and organization 

For the practical application of RUL prediction of a CGC, a prediction 
framework is proposed in this paper. First, the parameter value se-
quences with predictability and LRD characteristics are screened from 
the data collected by the sensors. The maximum Lyapunov index and 
LRD conditions are used to judge the predictability and LRD charac-
teristics of the collected data. When the maximum Lyapunov exponent is 
greater than 0, the data can be considered as predictable [46]; when 
Hurst exponent H(t) and tail parameter α meet the condition H(t) > 1

α, 
the process is considered to have LRD characteristics. Secondly, the 
health indicators of CGC are constructed by using the selected parameter 
sequences. Methods such as Root Mean Square [47], Crest Factor [48] 
and Skip-over Factor [49] can be used to construct health indicators. 
Thirdly, the health indicator state is divided into normal process, 
degradation process and failure state. Note that the data from the 
degradation process is used to build subsequent degradation models. 
The other steps are parameter estimation, iterative degradation model 
establishment and RUL prediction. 

To further verify the superiority of the model, it is compared with GC 
process [20,21], FBM [22,23], LFSM [24,25] and Long short-term 
Memory (LSTM) Recurrent Neural Network [26,27]. The Score of Ac-
curacy (SOA), Health Degree (HD), Root Mean Square Error (RMSE) and 
Mean Absolute Percentage Error (MAPE) [50,51] are used for compar-
ative error analysis. 

The structure of this paper is as follows. In the second section, LMSM 
is introduced and its LRD, multifractional and non-Gaussian character-
istics are analyzed. These characteristics already justify the superior 
realism of LMSM in prediction modeling. In Section 3, the degradation 
model driven by a nonlinear drift function and LMSM is developed, and 
the algorithm of RUL prediction is given. In Section 4, the parameters in 
the degradation model are estimated, where the Hurst function H(t) is 
estimated with consistent and strongly consistent estimates, which does 
not require searching for sharp estimates of covariance related to the 
variogram. In the fifth section, the CGC fault event of Shanghai Secco 
Petrochemical Co., LTD is analyzed and RUL prediction is carried out. 
We, then, conclude the paper in the last section. 

2. Linear multifractional Levy stable motion 

The LFSM stochastic process can be defined by the following sto-
chastic integral [24,25]: 

Acronyms and Abbreviations 

CGC Cracking Gas Compressor 
FBM Fractional Brownian Motion 
GC Generalized Cauchy 
HD Health Degree 
LFSM Linear Fractional Levy Motion 
LMSM Linear Multifractional Levy Stable Motion 
LSTM Long Short-Term Memory 
LRD Long-Range Dependence 
MAPE Mean Absolute Percentage Error 
PDF Probability Density Function 
RMSE Root Mean Square Error 
RUL Remaining Useful Life 
SOA Score of Accuracy  
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X(t) =
∫∞

− ∞

⎧
⎨

⎩

⎡

⎣(t − s)H− 1
α

+ − (− s)H− 1
α

+

⎤

⎦+

⎡

⎣(t − s)H− 1
α

− − (− s)H− 1
α

−

⎤

⎦

⎫
⎬

⎭
M(ds)

(1)  

where (t − s)+ = max(t − s, 0), (− s)− = max(s, 0) and H is the self-similar 
parameter. M(ds) is a cluster of symmetric Levy stable random variables. 
However, LFSM has limitations, which can only describe the phenom-
enon of uniform irregularity characterized by a single fractal structure or 
a constant Hurst exponent. For more realistic modeling, local variations 
of irregularity need to be considered, allowing the Holder exponent to 
vary from time to time or space. One way to achieve this generalization 
is to extend the standard LFSM to LMSM by the time function H(t)
exponential index [33]: 

X(t, H(t)) =
∫∞

− ∞

⎧
⎨

⎩

⎡

⎣(t − s)H(t)− 1
α

+ − (− s)H(t)− 1
α

+

⎤

⎦

+

⎡

⎣(t − s)H(t)− 1
α

− − (− s)H(t)− 1
α

−

⎤

⎦

⎫
⎬

⎭
M(ds)

(2)  

where the tail parameter α determines the heavy-tailed degree of LMSM. 

2.1. Differentiable and multifractional characteristics 

Let us consider path continuity and roughness of LMSM. Observe that 
LMSM with H(t) ≤ 1/α does not have continuous paths, i.e. paths that 
are continuous functions and satisfy several other nice properties [34]. A 
quite useful one among them, is that, for all fixed compact intervals 
H(t) ∈

( 1
α,1

)
, t ∈ R, the paths X(t, H(t)) has: 

sup
{⃒
⃒
⃒
⃒
X(t1, H(t1)) − X(t2, H(t2))

t1 − t1

⃒
⃒
⃒
⃒

}

<+ ∞, t1, t2 ∈ t (3)  

where H(t) is a continuous function. For any t1, t2, the H(t) has [22] : 

|H(t1) − H(t2)|

|t1 − t2|
ρH

≤ c with ρH = min
t1 ,t2∈t

H(t) −
1
α (4)  

where c is the constant, and with the convention that 
( 0

0
)

= 0. It is clear 
that the LMSM {X(t, H(t)) : t ∈ R}has continuous paths as long as its 
parameter H(t) is a continuous function with values in 

( 1
α, 1

)
Obviously, 

as long as the parameter H(t) in LMSM is a continuous function in the 
range of 

( 1
α, 1

)
, then LMSM has a continuous path. It is possible to use 

stochastic differentiation to build a prediction model. We now turn to 
path irregularity of LMSM, which can classically be measured through 
Holder exponents [35]. Recall that for each nonempty continuous in-
terval ∈ R, and every γ ∈ [0, 1], for any t1, t2, the Holder space Cγ(I) is 
defined as: 

Cγ(I) =
{

f : I ∈ R : sup
t1 ,t2∈I

{
|f (t1) − f (t2)|

|t1 − t2|
γ

}

< + ∞
}

(5) 

Let us define a global Holder exponent ρgobal
g (I) over I: 

ρgobal
g (I) = sup

{
γ ∈ [0, 1] : g ∈ Cγ(I)

}
(6) 

In the same way, the local Holder exponent ρlocal
g (t0) at an arbitrary 

t0 ∈ R is: 

ρlocal
g (t0) = sup

{
ρgobal

g ([M1 M2]) : M1 < t0 <M2

}
(7)  

when the continuous function g is LMSM X(t, H(t)), these two exponents 
are denoted by ρgobal

X (I), ρlocal
X (t0), respectively. According to Eqs. (3), (4) 

and (5), we can get: 

sup
t1 ,t2∈I

⎧
⎨

⎩

|X(t1, H(t1)) − X(t2, H(t2))|

|t1 − t2|
min

t1 ,t2∈I
H(I)− 1

α

⎫
⎬

⎭
<+ ∞ (8) 

Then, according to Eqs. (6), (7) and (8), we can get: 

ρgobal
X (I) = min

t∈I
H(t) −

1
α (9)  

ρlocal
X (t0) = min

t0∈[M1 M2 ]
H(t0) −

1
α = H(t0) −

1
α (10) 

The Eq. (9) and (10) show that the quantities min
t∈I

H(t) − 1
α and 

H(t0) − 1
α provide important information concerning the global and local 

path irregularity of LMSM; moreover, as we already pointed out, H(t0) is 
its self-similarity exponent at t0, and α determines the tail heaviness of 
its marginal distributions. Eqs. (9) and (10) indicate that ρgobal

X (I) and 
ρlocal

X (t0) provide important information about the global and local path 
irregularity of LMSM. In order to further explain the multifractional 
characteristics, LMSM paths under α = 1.75 and three H(t) conditions 
are simulated, as shown in Fig. 1. 

In Fig. 1, the ρgobal
X (I) of (a), (b) and (c) are equal but the ρlocal

X (t0) is 
not, which results in the obvious difference of LMSM paths of the three, 
indicating that local irregularity should be considered in LMSM path 
description. It is noteworthy that the irregular characteristics of the 
LMSM path show the same regularity as H(t), i.e. constant, monotone 
and periodic, which indicates that ρlocal

X (t0) contains all the information 
of the LMSM path. It can be concluded that when global parameter 
ρgobal

X (I) is the same and local parameter ρlocal
X (t0) is different, LMSM 

paths will still be different. So, introducing local irregularity can 
describe more actual degradation. 

2.2. Non-Gaussian and LRD conditions 

For LRD analysis of degraded sequences in real cases, the LRD con-
ditions need to be obtained. Let t > s > 0, Eq. (2) takes the form: 

X(t, H(t)) =
∫t

0

(
(t − s)H(t)− 1

α − sH(t)− 1
α

)
M(ds) (11) 

In view of Eq. (11) the integrals 
∫t

0

(
(t − s)H(t)− 1

α − sH(t)− 1
α

)
ds are finite 

for all t ∈ R, for H(t) ∕= 1
α . These integrals can be thought of as a time- 

varying function b(t). M(ds) is a cluster of symmetric Levy stable 
random variables. In particular, that if A = {a1, a2,⋯, an} ∈ R are 
disjoint Borel sets, then the random variables M(a1), M(a2),⋯,M(an)

are independent. Moreover, for any Borel set A ∈ R,t ∈ R, the discretized 
expression of Eq. (11) can be obtained: 

X(t, H(t)) = b(t1)M(a1) + b(t2)M(a2) + ⋯ + b(tn)M(an) (12) 

According to the limit theorem [38]: 

a1X1 + a2X2 + ⋯ + anXn →d
bnX + cn (13)  

where a1, a2,⋯, an and bn are non-zero constants, cn is a real number, 
the stochastic variables X1,X2,⋯,Xn are independent samples of X, and 

the symbol →d ndicates the same distribution. So, the LMSM is subject to 
a symmetric Lévy stable distribution; therefore, LFSM has infinite vari-
ance, which is, an advantage for representing high-jump data. 

The LRD analysis of LMSM is reformatted under the three conditions: 
(1) when H(t) = 1/α, b(t) in Eq. (11) is a constant. According to the 

central limit theorem, X(t, H(t)) becomes a Lévy stable motion with 
independent increments. So X(t, H(t)) does not have LRD 
characteristics; 
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(2) when H(t) < 1/α, b(t) in Eq. (11) is a time-varying function, but it 
is inversely proportional to time, and the predicted result will have a 
negative trend, which results in the actual trend. This situation is called 
a negative correlation condition; 

(3) when H(t) > 1/α, b(t) in Eq. (11) is a time-varying function and is 
proportional to time. So X(t, H(t)) has LRD characteristics. 

In conclusion, the value range of the self-similar index H(t) is (0,1) 
and combined with the above situation (3), it can be concluded that the 
LRD condition is: 

1
α < H(t) < 1 (14)  

3. Remaining useful life prediction based on LMSM 

3.1. Iterative degradation model 

In order to consider that the established degradation model has LRD 
and multifractal characteristics, we adopt the fractal degradation pro-
cess governed by LMSM X(t,H(t)) and nonlinear function (t; θ) . The 
fractal degradation process {Y(t), t ≥ 0} is defined as follows: 

dY(t) = μ(t; θ)dt + δadX(t, H(t)) (15)  

where θ represents the vector of unknown parameters involved in μ(t; θ)
and δ is a diffusion coefficient. The above degradation model is only a 
general form, and it needs to be discrete and specific to realize simula-
tion. First of all, the incremental distribution form of LMSM, by using 
Maruyama parameter [40] dBt = w(t)(dt)1/2 is: 

∫t

0

f (s)(ds)a
= a

∫τ

0

(t − s)a− 1f (s)ds (16)  

and 

dX = f (t)(dt)d (17)  

where d represents the self-similar parameter of random process X. The 
self-similar function of LMSM is required. self-similar definition is used 
[39]: 

x(t)
Δ
=

a− Hx(at) (18) 

The derivation process of LMSM’s self-similar function is as follows: 

Fig. 1. LMSM paths in case of three Hurst exponent time-varying functions.  
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X(ct, H(ct)) =
∫ct

− ∞

(
a(ct − s)H(ct)− 1

α − bsH(ct)− 1
α

)
M(ds)

= cH(t)− 1
α+

1
2

∫t

− ∞

(
a(t − s)H(t)− 1

α − bsH(t)− 1
α

)
M(ds) = cH(t)− 1

α+
1
2X(t, H(t)) (19) 

Note that the Hurst function does not change with the expansion or 
contraction of the time scale but is only related to the coarse overpassing 
of the time sequence itself, so H(ct) = H(t). According to Eqs. (17) and 
(19), the LMSM increment distribution form can be obtained as follows: 

dX(t, H(t)) = wα(t)(dt)H(t)+1
2−

1
α (20)  

where wα(t)is white noise subject to Levy stable distribution, i.e. wα(t) ∼
Sα(0,1,0). According to the linear nature of the Levy stable distribution 
[41]: 

aX + b ∼ Sα(0, |a|δ, aμ+ b) (21)  

where a is a non-zero constant and b is a real number. In addition, when 
Δt is relatively small, it holds that H(t + Δt) − H(t) = o(Δt)ρH , i.e. H(t +
Δt) = H(t). For any Δt > 0, we have 

X(t+Δt, H(t)) − X(t, H(t))
∫∞

− ∞

⎡

⎣(t + Δt − s)H(t)− 1
α

+ − (t − s)H(t)− 1
α

+

⎤

⎦

+

⎡

⎣(t + Δt − s)H(t)− 1
α

− − (t − s)H(t)− 1
α

−

⎤

⎦M(ds)

The LMSM increment distribution can be obtained as follows: 

X(Δt, H(t)) ∼ Sα

(
0,ΔtH(t)+1

2−
1
α, 0

)
(23) 

The degradation model (15) is differentiated to obtain iterative 
degradation prediction model: 

Y(t+Δt) − Y(t) = μ(Δt; θ)Δt + δawα(Δt)(dt)H(t)+1
2−

1
α (24) 

According to Eqs. (21), (23) and (24), it can be derived: 

Y(t+Δt) − Y(t) ∼ Sα

(
μ(t+Δt; θ) − μ(t; θ), δaΔtH(t)+1

2−
1
α, 0

)
(25)  

3.2. Algorithm implementation for remaining useful life prediction 

Our goal is to predict the RUL of CGC based on the degradation 
model (25). Similar to existing papers, RUL is defined as the first arrival 
time when equipment performance degradation to the failure threshold 
λ. The fault threshold λ is usually determined by prior knowledge. Then 
the RUL of {Y(t), t ≥ 0} at time tf can be defined as [47]: 

Rf = inf
{

rf > 0 : Y
(
tf + rf

)
≥ λ

⃒
⃒Y
(
tf
)
< λ

}
(26) 

According to the Eqs. (21), (23) and (25), we can get: 

Y
(
tf
)
− λ + δaLH,α

(
rf
)
∼ Sα

(
Y
(
tf
)
− λ, δarf

H(t)+1
2−

1
α, 0

)
(27) 

For convenience, Y(tf ) − λ+ δaLH,α(rf ) = Y(rf ). Based on these re-
sults, Eq. (31) is rewritten as: 

Rf = inf
{

rf : Y
(
rf
)
≥ [μ(t+Δt; θ) − μ(t; θ)]

⃒
⃒Y
(
tf
)
< λ

}
(28) 

In view of Eq. (28), the RUL is redefined as the first arrival time of 
symmetric Levy movement to λ. Referents [43,44] propose a spatio-
temporal transformation to derive the degradation process with 
time-varying coefficients to calculate the PDF of the RUL. Since the Levy 
stable distribution does not have a fixed PDF explicit expression [40], it 
is a challenge to calculate the PDF of RUL. In order to solve this chal-
lenge, Monte Carlo method [45] is used to obtain the PDF of RUL 
(Fig. 2). 

Blue curve in Fig. 2(a) shows the degradation process sequence of the 
equipment, meanwhile, red curve represents the probability density 
function of the RUL, which was calculated by using the Monte Carlo 
method. The identification of degradation state represents the input of 
the degradation model. (b) represents the specific details of the proba-
bility density of RUL calculated based on the Monte Carlo method, 
where the time corresponding to the maximum value of the probability 
density distribution curve is the predicted value of RUL. The specific 
algorithm is as follows: 

Step 1: Set the number of Monte Carlo simulations to n, select the pre-
diction starting point tf , and initialize rf to 1.  

Step 2: Sample a random number L that obeys Sα

(
Y(tf ) − λ,δarf

H(t)+1
2−

1
α,

0
)

.  

Step 3: If L ≥ [μ(t + Δt; θ) − μ(t; θ)], mark rf as the RUL, otherwise rf =

rf + 1, and return to Step 2. 
Step 4: Count the number of each rf realization and draw the proba-

bility density of the RUL 

4. Parameter estimation 

The degradation model based on LMSM has constant quantities a, b, 
c and time-varying parameters H(t). In this work, we estimate the pa-
rameters in two steps successively. In the first step, the Hurst function 
H(t) is estimated by consistent and strongly consistent estimation, which 
does not require further sharp estimation of covariance. In the second 
step, the characteristic function method is used to estimate the 
remaining constant parameters. 

4.1. Estimate of H(t)

There exist many methods for accurate estimation of the constant 
Holder exponent of the signal at a given time point. Among them, 
Scaling range (R/S) method or R/S method and Fourier power spectrum 
methods are the most widespread [52], which are usually implemented 
without any prior assumptions about possible scaling behavior in time 
series. Since these methods are based on linear log-log graphs, resulting 
in scale exponents of single values, they are not suitable for estimating 
local time-varying Holder exponents. 

In order to have unbiased estimate of low variance, we must consider 
a local stationary interv alτ < |ε|, such that H(t) remains constant, i.e., 
H(t) = Ht for t ∈

( t
2 − ε, t

2 + ε
)
. To estimate H(t) over the entire sample 

path, it is necessary to change the interval according to the local 

⇒v=s− t
∫∞

− ∞

⎡

⎣(Δt − v)H(t)− 1
α

+ − (− v)H(t)− 1
α

+

⎤

⎦ +

⎡

⎣(Δt − v)H(t)− 1
α

− − (− v)H(t)− 1
α

−

⎤

⎦M(dv) = X(Δt,H(t)) (22)   
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regularity of H(t). However, for the sake of simplicity, we make the 
stationary interval small enough to provide enough k points for a stable 
estimator. A sequence can be written based on the local growth of an 
incremental process: 

Sk(j) =
m

N − 1
∑j+k/2

i=j− k/2

|X(i+ 1,Ht) − X(i,Ht)| 1 < k < N (29)  

where m is the largest integer up to N/k, The expression of local Hurst 
index H(t) at point t = j/(N − 1) is: 

Hj/(N− 1) = −
ln
[ ̅̅π

2

√
Sk(j)

]

ln(m − 1)
(30) 

Denominator in Eq. (30) has been modified to provide a better es-
timate for the small sample size of the neighborhood length k. 
Remember that a smaller value of k will provide better accuracy but will 
produce greater fluctuations, and vice versa. 

4.2. Parameter estimation of the diffusion function 

Levy characteristic function [53,54] can be applied to estimate the 
remaining parameter. It is supposed that the actual degradation {y0, y1,

⋯, yn} is obtained by sampling over times {t0,t1,⋯,tn}, and the sampling 
interval is τ. Assume that the degenerate sequence collected by the 
sub-operator at time interval τ within time t is Y. A degradation differ-
ence vector y0:n = [y1 − y0, y2 − y1,⋯, yn − yn− 1] is constructed and the ith 

element in the vector is denoted by yi− 1:i. According to Eq. (25), y0:n ∼

Sα

(
μiτ, δaτH(t)+1

2−
1
α,0

)
is obtained, so position parameter, scale function δ 

and tail parameter α are estimated as follows: 

|γ(ρ;α, 0, μ, δ)| =
⃒
⃒E
{

ejρy0:n
}⃒
⃒ = e− δ|ρ|α (31)  

ln|γ(ρ; α, 0, μ, δ)| = − δ|ρ|α (32) 

Estimation of the scaling function δ: 

δ̂ = − ln|φ(1; α, 0, μ, δ)| = − ln
⃒
⃒E
{

ejy0:n
}⃒
⃒ = − ln

1
n
∑n

i=1
ejyi− 1:i (33) 

Estimation of the tail parameter α: 

ρα
0 =

ln|E{ejρ0y0:n}|

ln|E{ejy0:n}|
=

ln|φ̂(ρ0;α, 0, μ, δ)|
ln|φ̂(1; α, 0, μ, δ)|

(34)  

α̂ = logρ0

(
ln|φ̂(ρ0;α, 0, μ, δ)|
ln|φ̂(1;α, 0, μ, δ)|

)

(35)  

where ln|φ̂(ρ0;α,0,μ,δ)| = − ln 1
n
∑n

i=1ejρ0yi− 1:i . Then, equation (43) takes 
the form: 

α̂ = logρ0

⎛

⎜
⎜
⎜
⎝

− ln 1
n

∑n
i=1ejρ0yi− 1:i

− ln 1
n

∑n
i=1ejyi− 1:i

⎞

⎟
⎟
⎟
⎠

(36)  

where ln(2ρ0)

ρ0
2 − ρ0

= δ̂. Since the mathematical relationship between the scale 

function δ and the diffusion coefficient δa is δ = δaτH(t)+1
2−

1
α, the esti-

mated value of the diffusion coefficient δa is: 

δ̂a =
− ln 1

n

∑n
i=1ejyi− 1:i

τH+1
2−

1
α

(37) 

The position parameter μ of the symmetric Lévy stable distribution is 
estimated by complex number domain of the cumulant generating 
function of yqi :qi+1 : 

lnφ(ρ;α, 0, μ, δ) = δ|ρ|α + j
[

δ|ρ|αβ
ρ
|ρ| tan

(πα
2

)
+ μρ

]

(38)  

μ̂ =
Im

{
ρ0

α̂ ln|φ̂(1; α, β, μ, δ)| − ln|φ̂(ρ0;α, β, μ, δ)|
}

ρ0
α̂ − ρ0

(39)  

where ln|φ̂(ρ0; α, 0, μ, δ)| = − ln 1
k
∑k

j=1ejρ0yqi :j , and μ = μiτ. The drift 
coefficient μi is estimated as follows: 

μ̂i =
Im

{
ln 1

k

∑k
j=1ejρ0yqi :j − ρ0

α̂ ln 1
k

∑k
j=1ejyqi :j

}

τ(ρ0
α̂ − ρ0)

(40)  

5. Case study 

The health of the CGC is monitored in real time using data measured 
by external sensors. Once the interlock value is exceeded, the CGC shuts 
down. This case study adopts the CGC unplanned shutdown event of 
Shanghai SecCO Petrochemical Co., LTD. (Model: 11C2000M) occurred 
on January 8, 2021. The reason for this interlocking is that the seal gas 
discharge flow indicator (11FI22077) exceeds the interlocking value. 
Fig. 3 is the process flowchart of CGC low-pressure cylinder with model 
11C2000M, and the interlocking source is in the red box. 

After analysis and on-site inspection, it was found that the coke scale 
falling off and attachment on the rotor damaged the dynamic balance 
(Fig. 4 left), and the inlet and outlet heat exchanger 11E4101N leaked 
(Fig. 4 right). 

Fig. 2. RUL prediction based on Monte Carlo method.  
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This work establishes a CGC RUL prediction framework, as shown in 
Fig. 5. First, the data collected by the sensor is screened. The maximum 
Lyapunov index is used to determine the predictability of the collected 
data. When the maximum Lyapunov index is greater than 0, the data is 
predictable [46]. According to the LRD condition 1 /α < H(t) < 1 
deduced in Section 2, the LRD characteristics of the data are judged, 
filtering out data with both predictability and LRD. Secondly, health 
indicators are constructed based on the screened data; signal processing 
techniques are used to construct indicators that are easy to predict. 
Details of the operation are described below. Thirdly, the health indi-
cator development stage is divided into normal process, degradation 
process and failure state, and the data in the degradation process were 
selected for model establishment. Fourth, parameter estimation is 
reformed, according to Section 4 for specific methods. Fifthly, the 

establishment of the iterative degradation model is reformed, as 
described in Section 4.1. Finally, the Monte Carlo method can be applied 
to calculate the RUL. 

5.1. Selection and feature extraction of health indicators 

According to the field inspection results (Fig. 4), the root cause of the 
failure is leakage. In order to prevent leakage, Leakage problems can 
cause changes in the data measured by the pressure indicator 
(11PI22001), temperature controller (11TC22154) and liquid level in-
dicator (11LI22052) of the lubricating oil system. resulting in damage to 
important components, including bearings, and dependent on oil 
lubrication device. 

The time series in Fig. 6-8 are collected every minute from January 6 
to January 8, 2021.It can be seen from the Figures that compared with 
temperature (Fig. 7) and pressure (Fig. 8) parameters, the degradation of 
liquid level(Fig. 6) is a slow process with an overall upward trend, which 
can play a role in early warning of incipient failure. However, the liquid 
level degradation data in Fig. 6 cannot be directly used as a prediction 
sequence, so feature extraction is required for defining a predictable 
health indicator. Three commonly used health indicators, Root mean 
Square [47], Crest Factor [48] and Skip-over Factor [49], are used for 
feature extraction of the sequence, and the extraction results are shown 
in Fig. 9. Monotonicity, Robustness, Tradability are used to evaluate the 
health indicators [47]. Table 1 shows that the skip-over factor sequence 
is the best. 

Fig. 3. The Schematic representation of the11C2000M CGC system.  

Fig. 4. compressor stopping reason (left: coke off or adhesion in the pressure cylinder; right: plug off inlet and outlet heat exchanger of carbon dihydrogen reactor).  

Fig. 5. CGC RUL prediction framework.  

W. Song et al.                                                                                                                                                                                                                                   



Reliability Engineering and System Safety 225 (2022) 108630

8

5.2. Prediction of remaining useful life 

Based on the analysis of the degradation data of the CGC lubricating 
oil level, the degradation process is divided into normal process, 
degradation process and failure state, as shown in Fig. 6. Here, the RUL 
of CGC is, then, predicted based on the historical data of the degradation 
process, that is, the data after 1500.With a preset fault threshold λ = 10, 

the LMSM degradation model parameters are estimated under different 
predicted starting points, Monte Carlo method repetition are 500 times. 
Table 2 shows the model parameters of the first and last predicted 
starting points. The PDF of the RUL is shown in Fig. 10. 

To show the superiority of the LMSM degradation model, the GC pro-
cess [20,21], FBM [22,23], LFSM [24,25], and LSTM [26,27] were used as 
comparison models. Although LSTM has LRD characteristics, it lacks 
randomness description of degradation process. The Gaussiality of GC 
process and FBM hardly explains the non-Gaussiality of degradation pro-
cess. As a comparative model. LFSM has non-Gaussian characteristics, but it 

Fig. 6. Time series of liquid level.  

Fig. 7. Time series of temperature.  

Fig. 8. Time series of pressure parameters.  

Fig. 9. Characteristic sequence after extraction.  

Table 1 
Analysis of health indicators.   

Root mean square Crest factor Skip-over factor 
Monotonicity 0.0595 0.0595 0.0126 
Robustness 0.9789 0.9584 0.9958 
Trendability 0.5814 0.4082 0.6975 
Comprehensive 0.4919 0.4337 0.5828  

Table 2 
Parameter estimates of the LMSM degradation model.  

Prediction starting point H(t) α μ δ 
2000 0.6061 1.7024 1.6471 0.2213 
2030 0.5990 1.8936 1.7998 0.0531 
2060 0.7564 1.7081 1.8706 0.3176 
2090 0.6885 1.9602 1.8377 0.0744 
2120 0.8362 1.5796 1.8314 0.2365 
2150 0.6605 1.8023 1.8717 0.9965 
2180 0.6117 1.7345 2.1018 1.2086 
2210 0.6058 1.9255 2.4551 1.4217 
2240 0.6485 1.7135 2.5335 2.0336 
2270 0.7397 1.6865 2.9219 2.0889 
2300 0.7405 1.3847 3.0954 2.2604 
2330 0.7134 1.4344 3.5832 1.2990 
2360 0.7113 1.4997 3.8765 0.6730  

Fig. 10. RUL prediction accuracy of LMSM degradation model.  
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is difficult to describe the local irregularity of degradation processes. In 
comparison with the above models, stochastic and non-Gaussian multi-
fractal features highlight the superiority of the LMSM degradation model. 
The RUL prediction results of the four methods are shown in Fig. 11. 

The results of the four model evaluation indicators (SOA, HD, RSME 
and MAPE) [50] are given in Table 3. 

In comparison with other degradation models, the LMSM degrada-
tion model has the smallest RMSE and MAPE, while the SOA and HD 
values are the largest. Therefore, the accuracy of LMSM degradation 
model is higher. Then, it can be seen from the analysis of the λ perfor-
mance area [51] in Fig. 11(b) that the LMSM degradation model also has 
better prediction accuracy. 

6. Conclusion 

RUL prediction of equipment with nonlinear, LRD, non-Gaussian and 
multifractal characteristics in the degradation process is studied in this 
paper. Compared with the existing models, the degradation model 
proposed accounts for multifractal features. Multifractal features can 
explain local irregularity and describe degeneration sequences more 
realistically. 

For its application, a CGC RUL prediction framework is developed, 
and real data from Shanghai Secco Petrochemical Co., Ltd. is used to 
verify the validity of the prediction, and compare it with the results of 
often prediction methods. The error results show that the degeneration 
model and RUL prediction framework proposed have strong 
competitiveness. 
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