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a b s t r a c t

The localization of energy on chaotic discrete breathers (DBs) arising in a two-
dimensional triangular lattice due to the modulation instability of delocalized nonlinear
vibrational modes (DNVMs) is analyzed. Three DNVMs with frequencies above the
phonon band and demonstrating hard-type anharmonicity (an increase in the vibration
frequency with amplitude) are considered. Chaotic DBs have long lifetime, slowly radiate
their energy and eventually disappear. The evolution of the macroscopic characteristics
of the lattice is observed during the transition from the regime with chaotic DBs to
thermal equilibrium. It is established that chaotic DBs with a hard type of anharmonicity
reduce the ratio of the total energy to the kinetic energy (and, consequently, reduce the
heat capacity). They also reduce lattice pressure at constant area (and therefore reduce
thermal expansion). The tensile rigidity of the lattice also decreases due to DBs with a
hard type of anharmonicity. The most sensitive to the presence of DBs is the pressure,
which in the presence of DBs is approximately 30% less than in thermal equilibrium. The
ratio of the total energy to the kinetic energy in the regime of chaotic DBs decreases by
about 3%, and the tensile rigidity by only 0.1%.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

In the works of theorists, it was shown that nonlinear lattices can support spatially localized vibrational modes called
iscrete breathers (DBs) or intrinsic localized modes [1,2]. DBs have been extensively studied over the past three decades,
hich is reflected in review articles [3–5]. The existence of DBs in crystal lattices have been confirmed experimentally
6–11] and in a number of molecular dynamics [12–21] as well as in some first-principles simulations [22,23].

It is interesting how DBs affect the macroscopic properties of crystals. Probably the first systematic discussion of
his issue was by Manley [24] based on experimental results available at that time [6–8]. Simulation results obtained
or nonlinear chains also confirmed that DBs reduce thermal conductivity by scattering phonons [25,26], affect heat
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capacity [27,28], thermal expansion and elastic constants [28]. In the present study the effect of DBs on macroscopic
properties of a two-dimensional nonlinear lattice is addressed.

Our approach is similar to that used in previous works [27,28]. It is based on the fact that short-wavelength
elocalized nonlinear vibrational modes (DNVMs) with frequencies outside the phonon spectrum of the lattice experience
odulational instability, which leads to the formation of chaotic DBs [29–38]. DNVMs of triangular lattice were described

n the work [39], where it was shown that there are three of them with frequencies above the phonon spectrum. DBs
n triangular lattice with Fermi–Pasta–Ulam–Tsingou (FPUT) potential, obtained by imposing localizing functions upon
NVMs with frequencies above the phonon band, were described in the work [40], and some of them were previously
nown [38].
Chaotic DBs gradually lose energy due to the excitation of phonons, and the lattice approaches the state of thermal

quilibrium. Comparison of macroscopic parameters of the lattice with chaotic DBs and in thermal equilibrium makes it
ossible to understand how DBs affect macroscopic properties.
The following is a description of the triangular β-FPUT lattice and three DNVMs with frequencies above the phonon

band (Section 2). The macroscopic properties of the lattice are then introduced, including specific heat, mean pressure
(associated with thermal expansion) and elastic constants (Section 2). The simulation results include the time variation
of macroscopic properties during the development of modulation instability of the DNVMs, leading to the appearance of
chaotic DBs, their evolution and disappearance (Section 5). Based on the results obtained, a conclusion is drawn about
the effect of the hard type anharmonicity DBs on the macroscopic properties of the triangular β-FPUT lattice (Section 6).

. Nonlinear triangular lattice and its dispersion relation

A two-dimensional triangular β-FPUT lattice with nearest neighbor interactions is considered. A lattice is defined as a
et of points in the xy plane that have radius-vectors

ξi,j = ie1 + je2, (1)

here i and j are integers and the basis of the lattice can be defined by the vectors e1 = (h, 0) and e2 = (h/2, h
√
3/2),

where h is the distance between the nearest lattice points.
Each particle has two degrees of freedom, the components of the displacement vector (ui,j, vi,j), which are unknown

unctions of time. Position of the particle i, j is given by the radius vector r i,j = ξi,j + (ui,j, vi,j).
Each particle interacts with the six nearest neighbors via the β-FPUT potential

ϕ(r) =
k
2
(r − h)2 +

β

4
(r − h)4, (2)

where r is the distance between the particles, k and β are the coefficients for the harmonic and anharmonic parts of the
otential, respectively. We take h = 1 and k = 1 (choosing the units of distance and energy, respectively) and set β = 10,

for which the nonlinearity effects become noticeable for particle displacements of the order of 0.1. Particle mass is set
equal to m = 1 by choosing a unit of time.

Computational cell that includes I×J particles is considered. Periodic boundary conditions are used, r i,j = r i+I,j = r i,j+J .
The vectors connecting the six nearest neighbors with the i, j particle are:

R i,j,1 = r i+1,j − r i,j, R i,j,2 = r i,j+1 − r i,j,
R i,j,3 = r i−1,j+1 − r i,j, R i,j,4 = r i−1,j − r i,j,
R i,j,5 = r i,j−1 − r i,j, R i,j,6 = r i+1,j−1 − r i,j. (3)

The Hamiltonian (total energy) of the computational cell is the sum of the kinetic and potential energies:

H = K + P =

I∑
i=1

J∑
j=1

m
2
(ṙ i,j, ṙ i,j) +

1
2

I∑
i=1

J∑
j=1

6∑
k=1

ϕ(|R i,j,k|), (4)

where overdot means differentiation with respect to time.
With the help of the Hamilton’s equation, from the Hamiltonian Eq. (4) one can derive the following equations of

motion

müi,j =

6∑
k=1

ϕ′(|R i,j,k|)
|R i,j,k|

Ri,j,k,x,

mv̈i,j =

6∑
k=1

ϕ′(|R i,j,k|)
|R i,j,k|

Ri,j,k,y. (5)

For small displacements, ui,j ≪ h, vi,j ≪ h the following linearized equations of motion can be obtained from Eq. (5):

mü = k(u − 2u + u )
i,j i−1,j i,j i+1,j

2
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Fig. 1. Three DNVMs of the triangular lattice having frequencies above the phonon band [39]. Particles are shown in yellow and their trajectories
in black. The particles are shown at the moment of maximum deviation from the lattice positions. In (a), all particles oscillate along the y axis with
he amplitude A. In (b), all oscillating particles have the vibration amplitude A. One quarter of the particles are at rest. In (c), particles oscillating
long the x axis (y axis) have vibration amplitude equal to A (B).

+
k
4
[ui,j+1 − ui,j +

√
3(vi,j+1 − vi,j)]

+
k
4
[ui−1,j+1 − ui,j −

√
3(vi−1,j+1 − vi,j)]

+
k
4
[ui,j−1 − ui,j +

√
3(vi,j−1 − vi,j)]

+
k
4
[ui+1,j−1 − ui,j −

√
3(vi+1,j−1 − vi,j)], (6)

mv̈i,j =
k
√
3

4
[ui,j+1 − ui,j +

√
3(vi,j+1 − vi,j)]

−
k
√
3

4
[ui−1,j+1 − ui,j −

√
3(vi−1,j+1 − vi,j)]

+
k
√
3

4
[ui,j−1 − ui,j +

√
3(vi,j−1 − vi,j)]

−
k
√
3

4
[ui+1,j−1 − ui,j −

√
3(vi+1,j−1 − vi,j)]. (7)

Substituting into Eqs. (6) and (7) the solution in the form of small-amplitude waves, ui,j = F exp[i(qi + pj − ωt)] and
vi,j = B exp[i(qi + pj − ωt)], where i is imaginary unit, one obtains the dispersion relation [40]

ω2
1,2(q, p) =

−ξ ±
√

ξ 2 − 16m2γ

8m2 , (8)

where

ξ = 8mk(S + cos q − 1),
γ = 3k2[4(cos q − 1)S + S2 − Q 2

],

S = cos p + cos(q − p) − 2,
Q = cos p − cos(q − p). (9)

It is important to know the highest phonon frequency. As mentioned above, in this study we take k = m = 1, then
the maximum frequency is ωmax =

√
6, which is observed for the following wave numbers of the first Brillouin zone:

q, p) = (±π, ±π ), (q, p) = (±π, 0), and (q, p) = (0, ±π ).

3. Delocalized modes having frequencies above the phonon band

The initial conditions are set to excite one of the three DNVMs shown in Fig. 1. These modes have frequencies above
the phonon band and are designated as in the original work [39]. In (a) and (b) the one-component DNVMs are shown.
Initial displacement vectors of all moving particles have the same length A, which is the mode amplitude. In (c) the DNVM
has two components, particles moving along x (along y) axis have initial displacement vectors of length A (of length B).
3
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Fig. 2. Frequency as the function of amplitude for DNVM 2 (black dots), DNVM 4 (red circles) and DNVM γ 2 (blue squares). The highest phonon
frequency is shown by the horizontal dashed line.

Initial velocities of all particles in all three modes are equal to zero, ṙ0i,j = 0. Thus, the initial displacements are expressed
as follows:

For DNVM 2

u0
i,j = 0, v0

i,2j = A, v0
i,2j+1 = −A. (10)

For DNVM 4

u0
2i,2j = 0, v0

2i,2j = 0, u0
2i+1,2j = 0,

v0
2i+1,2j = −A, u0

2i,2j+1 = −u0
2i+1,2j+1 = −A

√
3/2,

v0
2i,2j+1 = v0

2i+1,2j+1 = A/2. (11)

For DNVM γ 2

u0
2i,2j = A, u0

2i+1,2j = −A, v0
i,2j = 0,

u0
i,2j+1 = 0, v0

2i,2j+1 = −B, v0
2i+1,2j+1 = B. (12)

Generally speaking, the two components of DNVM γ 2 have incommensurate frequencies, but the amplitudes A and B
can be chosen so that the frequencies of both components become equal [40]. For the model parameters used in this
study and for the amplitudes considered in this study, the frequencies are equal for A = 0.02, B = 0.572A; A = 0.03,
B = 0.5658A and A = 0.04, B = 0.557438A. In the limit A → 0 one has B → A/

√
3 [40].

We excite DNVMs using the initial conditions described above and integrate the nonlinear equations of motion (5)
using the Störmer symplectic integrator of order six [41] with the time step of 10−3 time units.

The oscillation period T of the DNVM is found from the time dependence of the particle coordinates. Then the
oscillation frequency is equal to ω = 2π/T .

In Fig. 2 one can see DNVM frequency as the function of amplitude. Result for DNVM 2 is shown by the black
dots, for DNVM 4 by the red circles, and for DNVM γ 2 by the blues squares. The upper edge of the phonon spectrum,
ωmax =

√
6 ≈ 2.45, is shown by the horizontal dashed line. In the A → 0 limit, DNVMs transform into low-amplitude

phonons with a frequency at the upper edge of the phonon spectrum. The DNVM frequencies increase with increasing
amplitude due to hard-type anharmonicity.

We are interested in DNVMs with frequency above the phonon spectrum, since for a modulationally unstable DNVM
there is no direct channel for transferring its energy to delocalized phonons, since it does not resonate with any phonon.
Consequently, as a result of the modulational instability of such a DNVM, energy is localized in the form of discrete
breathers [29].

4. Macroscopic properties of the lattice

Let us describe some macroscopic properties of the lattice.
The lattice kinetic energy K oscillates over time and we will consider the time averaged value

⟨K ⟩ =
1
τ

∫ τ

0
Kdt, (13)

here τ = 5T and T = 2π/
√
6 is the period of the highest frequency phonon.
4
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Let us analyze the ratio of the total to the time-averaged kinetic energy of the system,

CV =
H

⟨K ⟩
. (14)

he notation used for this ratio will be rationalized later. For a harmonic lattice, CV = 2, since in this case ⟨K ⟩ = H/2.
On the other hand, the anharmonicity of the lattice leads to a deviation of CV from the value 2. This means that CV
haracterizes the anharmonicity of the vibrational mode.
Components of the mechanical stress tensor can be calculated as follows

σxx =
1
S

I∑
i=1

J∑
j=1

3∑
k=1

ϕ′(|R|)
|R|

R2
x ,

σyy =
1
S

I∑
i=1

J∑
j=1

3∑
k=1

ϕ′(|R|)
|R|

R2
y,

σxy =
1
S

I∑
i=1

J∑
j=1

3∑
k=1

ϕ′(|R|)
|R|

RxRy, (15)

here R i,j,k = (Ri,j,k,x, Ri,j,k,y) and we used short notations R ≡ R i,j,k, Rx ≡ Ri,j,k,x, Ry ≡ Ri,j,k,y; S = (
√
3/2)h2IJ is the area

of the computational cell.
The Hooke’s law under plane stress conditions has the form

σxx = C11εxx + C12εyy + C13εxy,

σyy = C21εxx + C22εyy + C23εxy,

σxy = C31εxx + C32εyy + C33εxy, (16)

where εxx, εyy and εxy are components of the strain tensor and Cij = Cji are the stiffness constants.
The following two stiffness constants will be analyzed:

C11 =
1
S

I∑
i=1

J∑
j=1

3∑
k=1

(ϕ′′(|R|)
|R|

2 −
ϕ′(|R|)
|R|

3

)
R4
x ,

C22 =
1
S

I∑
i=1

J∑
j=1

3∑
k=1

(ϕ′′(|R|)
|R|

2 −
ϕ′(|R|)
|R|

3

)
R4
y . (17)

If the lattice particles vibrate, then the stresses and stiffness constants are functions of time. These characteristics will
be averaged over time,

⟨σij⟩ =
1
τ

∫ τ

0
σij(t)dt, ⟨Cij⟩ =

1
τ

∫ τ

0
Cij(t)dt, (18)

where τ = 5T and T = 2π/
√
6 is the period of the highest frequency phonon.

Averaged over time mean stress is

⟨p⟩ =
1
2
(⟨σxx⟩ + ⟨σyy⟩). (19)

Averaged over time stiffness of the lattice will be characterized by

⟨C⟩ =
1
2
(⟨C11⟩ + ⟨C22⟩). (20)

ote that C11 and C22 are the stiffness coefficients for tension/compression along the x and y axis, respectively.
Unless otherwise stated, the calculations consider a lattice of size I = J = 192 with a total number of particles of

36,864.
The degree of energy localization in the lattice can be quantified using the following localization parameter:

L = IJ

∑
i
∑

j e
2
i,j(∑

i
∑

j ei,j
)2 , (21)

here ei,j is the total (kinetic plus potential) energy of the i, j particle. If the energy is distributed equally among all
particles, then L = 1. If all the energy is localized on a single particle, then L = IJ , which is the total number of particles
in the computational cell.
5
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Fig. 3. Localization parameter as the function of time normalized to the period of the highest frequency phonon mode T = 2π/
√
6 (approximately

qual to the DB period). Results for (a) DNVM 2, (b) DNVM 4 and (c) DNVM γ 2, and for the three DNVM amplitudes: A = 0.02 (blue lines), A = 0.03
red lines) and A = 0.04 (black lines).

. Simulation results

We excite the three investigated DNVMs with three amplitudes: A = 0.02, 0.03 and 0.04. These amplitudes exceed
he minimum value at which DNVMs are stable, and, as shown below, modulational instability leads to the formation
f chaotic DBs with a large but finite lifetime. Let us analyze the time evolution of the localization parameter and the
acroscopic characteristics of the lattice.
In Fig. 3, time evolution of the localization parameter Eq. (21) is presented for (a) DNVM 2, (b) DNVM 4 and (c)

NVM γ 2. Blue, red and black lines show the results for the DNVM amplitudes A = 0.02, 0.03 and 0.04, respectively. Time
s normalized to the period of the phonon mode having maximal frequency, T = 2π/

√
6. The period of DBs is somewhat

ess than T , since their frequencies lie above the phonon band. This means that T can be viewed as a DB period. The results
hown in Fig. 3 indicate that with decreasing A, the development of modulation instability slows down, and chaotic DBs
ave a longer lifetime. The shortest lifetime have DBs arising from DNVM 2 and the longest — from DNVM γ 2.
It is instructive to see how the maximum energy in a system changes over time. This is shown in Fig. 4, where emax

i,j is
the maximum total energy of the particles. It can be seen that emax

i,j is small during the development of the instability of
the DNVM, then sharply increases with the formation of chaotic DBs and remains high during the lifetime of the DBs, and,
finally, becomes small when thermal equilibrium is reached. The maximum energy is higher for larger A, but, as already
mentioned, the DB lifetime is higher for smaller A.

Initially, the energy is homogeneously distributed over the lattice. The development of modulation instability leads to
energy localization. The kinetics of energy localization is shown in Fig. 5 for (a) DNVM 2, (b) DNVM 4 and (c) DNVM γ 2,
in all cases A = 0.03. Only in this case, a small size of the computational cell is used (I = J = 48). Black (white)
color corresponds to the minimum (maximum) energy. The left (right) panels show the energy distribution over the
computational cell at the time when, with an increase in the localization parameter, the value L = 0.8Lmax (L = Lmax) is
reached. In the right panels highly localized DBs can be seen.

We now turn to a discussion of the influence of chaotic DBs on the macroscopic properties of the triangular β-FPUT
lattice.

In Fig. 6, time evolution of the ratio of the total to the time-averaged kinetic energy, Eq. (14), is shown for (a) DNVM 2,
(b) DNVM 4 and (c) DNVM γ 2. The blue, red and black curves show the results for A = 0.02, 0.03 and 0.04, respectively.
The ratio in thermal equilibrium is higher than in the case when chaotic DBs exist in the lattice. We conclude that DBs
reduce the ratio of total to kinetic energy of the lattice.
6
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c
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Fig. 4. Dependence of the maximum total energy of the particles on time for (a) DNVM 2, (b) DNVM 4 and (c) DNVM γ 2. The blue, red and black
urves show the results for A = 0.02, 0.03 and 0.04, respectively. Time is normalized to the period of phonon with maximal frequency, which is
lose to the period of DB.

Fig. 5. Development of modulational instability of (a) DNVM 2, (b) DNVM 4 and (c) DNVM γ 2; results for A = 0.03. Left (right) panels show
istribution of energy over lattice at the time when L = 0.8Lmax (L = Lmax). Black (white) color corresponds to the minimal (maximal) energy.
7
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Fig. 6. The ratio of the total to the time-averaged kinetic energy, Eq. (14), as the function of time for (a) DNVM 2, (b) DNVM 4 and (c) DNVM γ 2.
ime is normalized to the period of phonon with maximal frequency, which is close to the period of DB. The blue, red and black curves show the
esults for A = 0.02, 0.03 and 0.04, respectively.

Averaged over time mean stress, Eq. (19), is presented in Fig. 7 as the function of time for (a) DNVM 2, (b) DNVM 4
nd (c) DNVM γ 2. The mean stress is normalized to the value at thermal equilibrium, ⟨p̄⟩. The blue, red and black curves
how the results for A = 0.02, 0.03 and 0.04, respectively. The computational cell area in our simulations is fixed, and the
endency to expand is compensated by the appearance of a positive mean stress in the system. However, the mean stress
s higher in the thermal equilibrium regime than in the regime of chaotic DBs. We conclude that DBs reduce pressure in
he lattice at constant area and hence reduce the thermal expansion of the lattice.

Finally, in Fig. 8, the averaged over time stiffness of the lattice, Eq. (20), is analyzed being normalized to the value at
hermal equilibrium, ⟨C̄⟩. The results are presented for (a) DNVM 2, (b) DNVM 4 and (c) DNVM γ 2. In all cases A = 0.02.
It can be seen that DBs reduce stiffness of the lattice because ⟨C⟩ increase during the transition from the regime of chaotic
DBs to thermal equilibrium. Note that the regime of chaotic DBs for A = 0.02 starts at about t/T = 1200, when a sharp
increase in the localization parameter is observed, see Fig. 3.

6. Discussion and conclusions

Using molecular dynamics simulations, it was demonstrated that the three DNVMs shown in Fig. 1 create chaotic DBs
in the triangular β-FPUT lattice as the modulation instability of DNVMs develops. This is because DNVMs have frequencies
above the phonon spectrum (see Fig. 2), so they cannot excite extended phonons and the energy is localized on DBs. DBs
in the lattice under consideration have a hard-type anharmonicity [40].

The formation of chaotic DBs was proved by monitoring the localization parameter (see Fig. 3), maximal energy of
particles (Fig. 4) and distribution of energy over the computational cell (Fig. 5). DBs had a long lifetime, thousands of
oscillation periods (see Fig. 3), but over time they disappeared, emitting energy in the form of low-amplitude phonons.

The ratio of the total to kinetic energy, Eq. (14), averaged over time mean stress, Eq. (19), and averaged over time
stiffness of the lattice, Eq. (20), were calculated during the transition of the system from the regime with DB to thermal
equilibrium (the results are shown in Figs. 6, 7 and 8, respectively). It was found that during this transition the total to
kinetic energy ratio, mean stress and stiffness increased. As a result, it was concluded that the hard-type anharmonicity
DBs reduce all three investigated macroscopic properties of the lattice. Similar conclusion was made for chaotic DBs in
nonlinear chains with the hard-type anharmonicity [27,28], but for the soft-type anharmonicity the effect of DBs on the
macroscopic properties is just the opposite [27].

In our simulations the area of the computational cell was constant. Increase in mean stress (pressure) at constant
volume means that the lattice tends to expand. In other words, one can say that the hard-type anharmonicity DBs reduce
8
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Fig. 7. Averaged over time mean stress, Eq. (19), as the function of time for (a) DNVM 2, (b) DNVM 4 and (c) DNVM γ 2. The means stress is
ormalized to the value at thermal equilibrium; time is normalized to the period of phonon with maximal frequency, which is close to the period
f DB. The blue, red and black curves show the results for A = 0.02, 0.03 and 0.04, respectively.

Fig. 8. Averaged over time stiffness of the lattice, Eq. (20), as the function of time for (a) DNVM 2, (b) DNVM 4 and (c) DNVM γ 2. The stiffness is
ormalized to the values at thermal equilibrium; time is normalized to the period of phonon with maximal frequency, which is close to the period
f DB. Results for A = 0.02.
9
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thermal expansion of the lattice because pressure in the lattice at constant volume is smaller in the regime of chaotic DBs
and higher in thermal equilibrium.

Similarly, a decrease in the ratio of the total to kinetic energy of the lattice due to excitation of DBs can be associated
ith a decrease in the specific heat of the lattice. Indeed, specific heat at constant volume is defined as

Cv = lim
∆T→0

∆H
∆T

, (22)

here ∆H and ∆T are the total energy and temperature increments, respectively. Temperature increment is proportional
o the kinetic energy increment. Suppose in a nonlinear lattice a larger part of total energy increment goes into the form
f kinetic energy. This will lead to a faster growth of denominator in Eq. (22) and Cv will decrease. Actually, this happens
or the hard-type anharmonicity lattice considered in the present work. Excitation of hard-type anharmonicity DBs results
n increase of oscillation frequency and hence in increase of particle velocities and kinetic energy (or temperature) of the
ystem. This is related to a decrease in Cv . System with a soft-type anharmonicity shows an opposite effect, DBs would
reduce Cv . A relation between the heat capacity at constant volume and the ratio of the total energy to the kinetic energy
has been discussed in the works [27,28,42–44].

DBs affect various macroscopic properties of the lattice with different strengths. The most sensitive to the presence of
DBs is the pressure, which in the presence of DBs is approximately 30% lower than at thermal equilibrium (see Fig. 7).
The ratio of the total energy to the kinetic energy in the regime of chaotic DBs decreases by about 3% (see Fig. 6), and the
tensile rigidity by only 0.1% see Fig. 8.

We hope that our results will stimulate further studies of the effect of discrete breathers on the macroscopic properties
of nonlinear lattices, including crystal lattices.

In future studies, we plan to analyze the effect of discrete breathers on the macroscopic properties of three-dimensional
model lattices and crystals.

A possible future extension of this work is the inclusion of long-range interactions [45,46]. In this case, employment
of a fast particle method like the Barnes–Hut algorithm [47] will allow to reduce the computational cost significantly.
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