QSAR-МОДЕЛИРОВАНИЕ СВЯЗИ «СТРУКТУРА – АНТИОКИСЛИТЕЛЬНАЯ АКТИВНОСТЬ» В РЯДУ НЕКОТОРЫХ ПРОИЗВОДНЫХ БЕНЗОПИРАНА И БЕНЗОФУРАНА

© Ю. З. Мартынова², В. Р. Хайруллина²*, Г. Г. Гарифуллина², Д. С. Мицукова², Ф. С. Зарудий¹, А. Г. Мустафин²

¹Башкирский государственный медицинский университет Россия, Республика Башкортостан, 450000 г. Уфа, ул. Ленина,3.

²Башкирский государственный университет Россия, Республика Башкортостан, 450076 г. Уфа, ул. Заки Валиди, 32.

Email: veronika1979@yandex.ru

С использованием программы GUSAR 2013 выполнен количественный анализ взаимосвязи между структурой и антиокислительной активностью 64 производных бензопирана и бензофурана в интервале значений lgk₇ = 0.00 ÷ 7.06. Построено девять статистически значимых валидных консенсус-моделей, характеризующихся высокой точностью прогноза параметра lgk₇ для структур обучающих и тестовых выборок.

Ключевые слова: антиокислительная активность, антиоксиданты, моделирование QSAR, программа GUSAR 2013, MNA- и QNA-дескрипторы.

Введение

Фенольные антиоксиданты, благодаря своей способности дезактивировать пероксильные радикалы, образующиеся при окислении полимерных материалов, смазок, топлив масел и жиров, в настоящее время повсеместно используются для снижения окислительной деструкции товаров народного потребления и продуктов питания [1-3]. В связи с этим актуальной задачей физической химии является количественное изучение и количественный прогноз антиокислительных свойств природных и синтетических веществ в различных модельных системах. В настоящее время в этом направлении активно проводятся исследования учеными. Для оценки антиокислительной активности (АОА) индивидуальных веществ и композиций на их основе используют широкий арсенал физико-химических и биохимических методов [4-8]. Объективной количественной характеристикой АОА потенциального антиоксиданта являются константы скорости взаимодействия молекулы антиоксиданта с радикалом, ведущим цепь окисления, приводящего к обрыву цепи [9-10].

Эффективность антиокислительного действия ингибиторов радикально-цепного окисления органических соединений тесно связана с их строением и обусловлена наличием в их структуре определенных функциональных групп. Для количественного моделирования взаимосвязей «структура – AOA» целесообразно использовать методологию QSAR. Она позволяет строить модели количественного прогноза параметра k₇, которые могут найти успешное применение для поиска новых антиоксидантов в виртуальных базах данных, а также прогноза численного значения k₇ для перспективных к синтезу соединений.

Следует отметить, что различными авторами неоднократно делались попытки выявить количест-

венную связь между строением хроманов, фенолов и полифенолов с их антирадикальной активностью, в виде констант скорости отрыва атома водорода от гидроксильной и аминогрупп антиоксидантов разными радикальными интермедиатами [11-13]. В качестве дескрипторов в этих исследованиях использовались индикаторные переменные, а также физико-химические дескрипторы, как: Еномо. Ецимо, и т.д., рассчитываемых методами квантовой химии [12-18]. Однако, использование этих дескрипторов, несмотря на их четкий физический смысл, затруднено для широких наборов разнообразных по строению соединений что объясняется спецификой их расчета (довольно значительные временные и вычислительные затраты). Для моделирования больших по размеру обучающих выборок с довольно разнообразными по строению наборами соединений необходимо использовать такие методы расчета дескрипторов, которые позволят рационализировать процесс построения моделей QSAR. Одной из таких программ является программа GUSAR 2013 [19-22]. Эта программа хорошо зарекомендовала себя при моделировании разных видов биологической активности. Однако, для количественного моделирования связи между строением и эффективностью фенольных антиоксидантов, выраженной через параметр k₇, программа GUSAR 2013 до настоящего времени не применялась.

В связи с этим, целью настоящей работы заключалась в изучении количественной взаимосвязи «структура – антиокислительная активность» в ряду производных некоторых производных бензопирана и бензофурана с общими структурными формулами I–II (*puc.* 1) с использованием программы GUSAR 2013 и построение статистически значимых QSAR-моделей прогноза значений k₇ для поиска новых потенциально эффективных антиоксидантов.

Методика вычислительного эксперимента

Изучение количественной связи «структура – АОА» в ряду производных бензопирана и бензофурана с общими структурными формулами I–II (*рис.* 1) проводили с использованием компьютерной программы GUSAR 2013 (General Unrestricted Structure Activity Relationships) [21, 23–28]. Модели QSAR строили в несколько этапов, описанных более детально ниже.

Формирование обучающих и тестовых выборок. Модели QSAR M1-M9 строили на основе обучающих выборок ОВ1-ОВ3, проверку их валидности осуществляли с использованием тестовых выборок ТВ1-ТВ2. Все эти выборки формировали в соответствии со схемой, представленной на рис. 2, на основе исходного массива данных МД1, который включал в себя 64 структуры антиоксидантов из классов пентазамещенных 3,4,-дигидро-2Н-1бензопиран-6-ола и 2,3-дигидро-1-бензофуран-5-ола с соответствующими им значениями lgk7. Массив МД1 был сформирован на основе данных, представленных в работе [29]. Количественный параметр lgk7 для каждого из антиоксидантов в этом наборе получен в результате логарифмирования численных значений параметра k7 по формуле $\lg k_7 = \log_{10} k_7$, где k_7 – константа скорости ингибирования [29]. Характеристики обучающих и тестовых выборок представлены в табл. 1 и 2 соответственно.

Таблица 1

1	1 1		
Комментарий	Характеристика параметров OB _i	OB2	OB3
Количество соединений	Ν	51	53
Среднее значение lgk7	$\overline{\text{lgk}_7}$	3.5285	
Диапазон значения lgk7	$\Delta \ lgk_7$	7.0569	
Пороговые значения, используемые для оцен- ки прогноза модели	0.10×∆ lgk7 0.15×∆ lgk7 0.20×∆ lgk7 0.25×∆ lgk7	0.7057 1.0585 1.4114 1.7642	

Характеристика ОВ:

2. Построение моделей QSAR. Итоговые модели QSAR M1–M9 представляли собой консенсус от 20 до 320 частных регрессионных зависимостей. При этом каждая из частных моделей, входящих в итоговую консенсус-модель, строилась независимо друг от друга на основе одного из двух типов подструктурных дескрипторов атомных окрестностей: QNA (Quantitative Neighbourhoods of Atoms) и MNA (Multilevel Neighbourhoods of Atoms), а также трех дескрипторов цельной молекулы (топологической длины, топологического объема и липофильности), расчет которых осуществлялся в выбранной программе автоматически из структурных формул химических соединений с учетом валентности и парциальных зарядов всех атомов [21; 23-28]. Специфика типов связи при расчетах не учитывалась. Идеология расчета дескрипторов в программе GUSAR 2013 детально описана в статьях [21; 23-28]. Консенсус-модели на основе частных регрессионных зависимостей формировали исходя из принципа подобия. Оптимальный набор дескрипторов для построения частных регрессионных уравнений отбирался автоматически методом самосогласованной регрессии (SCR), а также на основе процедуры скользящего контроля контроля с 20-ти кратным рандомизированным выбросом 20% соединений из обучающих выборок ОВ1-ОВ3, которая осуществлялась также автоматически [21; 23-28].

Итоговый прогноз численного значения lgk₇ для конкретного соединения формировался в результате усреднения прогнозных значений lgk₇ отдельных частных регрессионных моделей QSAR, входящих в данную использованную консунсусмодель. Однако вследствие того, что QNA- и MNAдескрипторы не поддаются однозначной физической интерпретации, регрессионные уравнения, построенные на их основе, в явном виде в программе GUSAR 2013 не отображаются.

3. Оценка описательной и прогностической способности моделей OSAR. Описательную способность моделей QSAR M1-M9, а также наличие систематических ошибок при их расчетах оценивали по результатам прогноза параметра lgk7 для структур обучающих выборок ОВ1-ОВ3 с использованием метрики на основе коэффициентов детерминации R^2 (R^2_{test} , R^2_0 , $\overline{R^2_{mTSi}}$, CCC). Прогностическую способность этих же моделей оценивали по результатам прогноза параметра lgk7 для структур внутренних тестовых выборок TB1 и TB2 с использованием двух категорий метрик: 1) по метрикам на основе коэффициентов детерминации R^2 (R^2_{test} , R^2_0 , $Q^2(_{F1}), Q^2(_{F2}), \ \overline{R^2_{\ mTSi}}$, ССС); и 2) по метрикам, оценивающим ошибки прогноза значений lgk7 (среднеквадратичная ошибка (RMSEP), средняя абсолютная ошибка (МАЕ), стандартное отклонение (S.D.)) [30-32]. Расчет этих статистических параметров проводили с использованием программы Xternal Validation Plus 1.2 [33].

Характеристика ТВ_і

Комментарий	Характеристика параметров ТВ _і	TB1	TB2			
Количество соединений	N	13	11			
Среднее значение lgk7	$\overline{\text{lgk}_7}$	5.3	704			
Диапазон значения lgk7	Δ lgk ₇ 6.7559					
Распределение наблюдаемых значений ТВ _і вокруг средней ТВ (в %)	$\overline{lgk_7} \pm 0.5_{(TBi)}$, %	7.6923	9.0909			
	$\overline{\mathrm{lgk}_{7}}\pm1.0_{\mathrm{(TBi)}}$, %	69.2308	45.4545			
	$\overline{\text{lgk}_7} \pm 1.5_{\text{(TBi)}}$, %	76.9231	72.7273			
	$\overline{\text{lgk}_7} \pm 2.0_{\text{(TBi)}}$, %	84.6154	90.9091			
Распределение наблюдаемых значений ТВ _і вокруг средней ОВ (в %)	$\overline{lgk_7} \pm 0.5_{(OBi)}$, %	7.6923	9.0909			
	$\overline{\text{lgk}_7} \pm 1.0_{(\text{OBi})}$, %	15.3846	9.0909			
	$\overline{lgk_7} \pm 1.5_{(OBi)}$, %	15.3846	18.1818			
	$\overline{\text{lgk}_7}\pm2.0_{(\text{OBi})}$, %	23.0769	18.1818			
ОВ1 (МД1)* для моделей М1-М3, N=64, lgk:=0.00-7.06 4:1 5:1 ПВ1 для моделей M4-M6, N=13, lgk:=0.00-7.06 0B3 для моделей M7-M9, N=53, lgk:=0.00-7.06 0B3 для моделей M7-M9, N=53, lgk:=0.00-7.06						

Рис. 2. Формирование обучающих и тестовых выборок для построения моделей QSAR M1–M9, где МД – массив данных, ОВ – обучающая выборка; ТВ – тестовая выборка, N – число соединений, вошедших в соответствующие обучающие выборки OB1–OB3 и тестовые выборки TB1–TB2.

Результаты и их обсуждение

На основе консенсус-подхода, реализованного в программе GUSAR 2013, проведено моделирование количественной взаимосвязи между строением АОА пентазамещенных 3,4,-дигидро-2H-1-бени зопиран-6-ола и 2,3-дигидро-1-бензофуран-5-ола с общими структурными формулами I-II (puc. 1), содержащимися в обучающих выборках OB1-OB3. В результате, в зависимости от типа использованных при расчетах дескрипторов, для каждой из этих обучающих выборок построено по три консенсусмодели QSAR. Описательная и прогностическая способность этих моделей оценены на структурах обучающих выборок ОВ1-ОВ3 при скользящем контроле с 20-ти кратным рандомизированным исключением 20% соединений, а также на структурах тестовых выборок ТВ1-ТВ2. Характеристики описательной способности консенсус моделей М1-М9, рассчитанные автоматически в программе GUSAR 2013 на основе сопоставления экспериментальных значений параметра lgk7 с предсказанными по этим девяти моделям, представлены в табл. 3.

Следует отметить, что различные коэффициенты детерминации, величины стандартного отклонения и критерия Фишера, представленные в табл. 3, представляют собой усредненные значения, полученные с учетом всех частных регрессионных моделей, входящих в консенсус модель M_i. Несмотря на выраженные преимущества в построении моделей QSAR и использовании их для отбора потенциально активных соединений, по сравнению с другими программными пакетами (экспрессность, универсальность дескрипторов, их обоснованный автоматический отбор, высокая описательная способность моделей, возможность построения как парциальных, так и консенсус-моделей, возможность регулирования параметров скользящего контроля и т.д.), программа GUSAR 2013 не позволяет детально оценивать прогностическую способность построенных регрессионных зависимостей, вследствие того, что в ней не предусмотрен расчет широкого диапазона критериев детерминации (R^2_0 , $Q^2(_{F1})$, $Q^2(_{F2})$, $\overline{R^2_{_{mTSi}}}$, ССС) и средней абсолютной ошибки (МАЕ). Между тем эти показатели имеют важное значение при оценке прогностической способности моделей QSAR [34]. В связи с этим для их расчета использовали программу XternalValidationPlus 1.2 [33]. Следует отметить, что данная программа на основании прогноза численного значения параметра lgk7 для структур обучающих выборок ОВ1-ОВЗ и тестовых выборок ТВ1-ТВ2, показала отсутствие систематической ошибки при построении всех регрессионных зависимостей М1-М9, что свидетельствует об универсальности дескрипторов, заложенных в программу GUSAR 2013, а также корректности построенных на их основе регрессионных моделей. Критерии оценки прогностической способности моделей QSAR М1-М9, выбранные с учетом общепринятых рекомендаций профессора Kunal Roy с соавторами, которые являются ведущими исследователями в области QSAR-моделировании [30-32], представлены в табл. 4. В соответствии с их рекомендациями полагали, что консенсус-модель QSAR характеризуется высокой прогностической способностью, в том случае, когда значения различных коэффициентов детерминации мало отличаются между собой и стремятся к единице (за исключением критерия Гольбрайха), и при этом значение показателя средней абсолютной ошибки составляет не более 10% от интервала активности моделей.

В том случае, если значения различных коэффициентов детерминации мало отличаются между собой и стремятся к значению 0.6, исключая критерий Гольбрайха, и при этом значение показателя средней абсолютной ошибки должно превышает 25% от интервала активности моделей, то модель обладает низкой прогностической способностью. Модель отличается умеренной прогностической способностью, если значения соответствующих параметров находятся в промежутке между значениями, характерными для моделей с высокой и низкой прогностическими способностями.

В качестве примера на рис. З в виде диаграмм изображены результаты оценки валидности моделей М4-М9, полученные с помощью программы XternalValidationPlus 1.2. Как видно из этого рисунка, модели QSAR обладают довольно высокой описательной и умеренной прогностической способностью. Незначительная разница между численными значениями разных типов коэффициентов детерминации в сочетании с приемлемыми значениями параметров МАЕ и МАЕ+3 S.D., представленными в табл. 3 и на рис. 3, свидетельствует о том, что программа GUSAR 2013 позволяет строить валидные модели QSAR, ориентированные на прогноз параметра lgk7 для антиоксидантов с общими структурными формулами I-II (puc. 1) [25-28; 30], можно как с использованием одного определенного типа дескрипторов (QNA- или MNA-дескрипторов), так и их сочетания в консенсус-подходе.

Таблица 3

при использовании метода SCR $\Delta lgk_{7 (OBi)} = 7.0569$									
Обучающая выборка	Модель	Ν	N_{mod}	$\overline{R_{OBi}^2}$	$\overline{F_{OBi}}$	S.D. _{OBi}	$\overline{Q_{OBi}^2}$	$\overline{R_{TBi}^{2}}$	V
Модели QSAR, построенные на основе QNA-дескрипторов									
OB1	M1	64	20	0.900	52.409	0.523	0.863	-	8
OB2	M4	51	20	0.918	51.914	0.460	0.876	0.7778	8
OB3	M7	53	20	0.883	40.217	0.544	0.836	0.8987	7
Модели QSAR, построенные на основе MNA-дескрипторов									
OB1	M2	64	20	0.934	53.490	0.446	0.898	-	10
OB2	M5	51	20	0.899	35.390	0.533	0.847	0.8317	8
OB3	M8	53	20	0.923	42.867	0.466	0.879	0.8641	8
Модели QSAR, построенные на основе QNA- и MNA-дескрипторов									
OB1	M3	64	320	0.939	63.214	0.428	0.912	-	10
OB2	M6	51	320	0.935	59.567	0.420	0.901	0.8408	8
OB3	M9	53	320	0.924	48.221	0.458	0.886	0.9249	8

Статистические параметры консенсус-моделей QSAR M1–M9 при использовании метода SCR Δ lgk_{7 (OBi)} = 7.0569

N – число структур в обучающей выборке; Nmod – число частных регрессионных моделей, входящих в консенсус модель Mi;

R²_{ов} – коэффициент детерминации, рассчитанный для соединений из обучающей выборки;

R²_{тв} – коэффициент детерминации рассчитанный для соединений из тестовой выборки;

 $Q^2_{_{0B}}$ – коэффициент корреляции рассчитанный на обучающей выборке при скользящем контроле с исключением по одному;

F-критерий Фишера; S.D. - стандартное отклонение; V - число переменных в конечном регрессионном уравнении.

Таблица 4

Критерии для оценки прогностическую способности моделей QSAR M1-M9

Рис. 3. Статистические параметры для производных замещенных фенолов, содержащихся в тестовых выборках ТВ1 (а) и ТВ2 (б), по консенсус-моделям QSAR М4–М9, построенных с использованием метода отбора дескрипторов SCR.

Таким образом, модели QSAR M1–M9 могут быть с успехом использованы для виртуального скрининга библиотек и различных баз данных с целью рационального поиска в них потенциальных антиоксидантов.

Работа выполнена при финансовой поддержке РНФ, проект 19-73-20073.

ЛИТЕРАТУРА

- Kirschweng B., Tátraaljai D., Földes E., Pukanszky B. Natural antioxidants as stabilizers for polymers // J. Polym. Degrad. Stab. 2017. Pp. 1–66.
- Nimse S. B., Pal D. Free radicals, natural antioxidants, and their reaction mechanisms // J. RSC Adv. 2015. Vol. 5. Pp. 27986–28006.
- Valantina R. S., Neelamegam P. Selective ABTS and DPPHradical scavenging activity of peroxide from vegetable oils // Int. Food. Res. J. 2015. Vol 22. Pp. 289–294.
- Apak R., Özyürek M., Guclu K., Capanoglu E. Antioxidant Activity/Capacity Measurement. I. Classification, Physicochemical Principles, Mechanisms, and Electron Transfer (ET)-Based Assays // J. Agric. Food. Chem. 2016. Vol. 64. No. 5. Pp. 997–1027.
- Pisoschi A. M., Negulescu G. P. Methods for Total Antioxidant Activity Determination: A Review // J. Biochem. Anal. Biochem. 2015. Vol. 1. No. 1. Pp, 1–10.
- Prior R. L., Wu X., Schaich K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements // J. Agric. Food. Chem. 2005. Vol. 53. Pp. 4290–4302.
- Sánchez-Moreno C. Review: Methods Used to Evaluate the Free Radical Scavenging Activity in Foods and Biological Systems // J. Food. Sci. Technol. Int. 2002. Vol. 8. No. 3. Pp. 121–137.

- Хасанов В. В., Рыжова Г. Л., Мальцева Е. В. Методы исследования антиоксидантов // Химия растительного сырья. 2004. №3. С. 63–75.
- Denisov E. T., Afanas'ev I. B. Organic Chemistry // Oxidation and Antioxidants in Organic Chemstry and Biology / E. T. Denisov and I. B. Afanas'ev, eds., Boca Raton: CRC Press, 2005. Pp. 992.
- Denisov E. T., Denisova T. G. Thermodynamics / Handbook of Antioxidants: Bond Dissociation Energies, Rate Constants, Activation Energies, and Enthalpies of Reactions // E. T. Denisov and T. G. Denisova, eds., Boca Raton: CRC Press, 1999. Pp. 312.
- Khairullina V. R., Gerchikov A. Ya., Akhmetkhanov R. M., Gabitov I. T., Minniyanova R. T., Safarova A. B., Chukchieva I. Yu., Kuchin A. V. Antioxidant Properties of Some 4-,6-Methyl-substituted Derivatives of Isobornylphenol // Russ. J. Appl. Chem. 2012. Vol. 85. No. 3. Pp. 401–406.
- Bendary E., Francis R. R., Ali H.M.G., Sarwat M. I., El Hady S. Antioxidant and structure-activity relationships (SARs) of some phenolic and anilines compounds // J. Ann. Agric. Sci. 2013. Vol. 58. No. 2. Pp. 173–181.
- Amić D., Lučić B. Reliability of bond dissociation enthalpy calculated by the PM6 method and experimental TEAC values in antiradical QSAR of flavonoids // J. Bioorg. Med. Chem. 2010. Vol. 18. No. 1. Pp. 28–35.
- Amic D., Davidovic-Amic D., Beslo D., Rastija V., Lucic B., Trinajstic N. SAR and QSAR of the Antioxidant Activity of Flavonoids // J. Curr. Med. Chem. 2007. Vol. 14. No. 7. Pp. 827–845.
- Amić A., Marković Z., Klein E., Marković M.D., Milenković D. Theoretical study of the thermodynamics of the mechanisms underlying antiradical activity of cinnamic acid derivatives // J. Food Chem. 2018. Vol. 246. Pp. 481–489.
- Anouar E. A Quantum Chemical and Statistical Study of Phenolic Schiff Bases with Antioxidant Activity against DPPH Free Radical // J. Antiox. 2014. Vol. 3. No. 2. Pp. 309–322.

- Lakkadi A., Vuppala S., Tigulla P. Novel in vitro antioxidant estimation of phenolic compounds and molecular modeling studies. Int. Res // J. Pharmacy 2013. Vol. 2. No. 9. Pp. 148–152.
- Iuga C., Alvarez-Idaboy J. R., Russo N. Antioxidant Activity of trans-Resveratrol toward Hydroxyl and Hydroperoxyl Radicals: A Quantum Chemical and Computational Kinetics Study // J. Org. Chem. 2012. Vol. 77. No. 8. Pp. 3868–3877.
- Khairullina V. R., Gerchikov A. Ja., Lagunin A. A., Zarudii F. S. QSAR Modelling of Thymidylate Synthase Inhibitors in a Series of Quinazoline Derivatives // Pharm. Chem. J. 2018. Vol. 51. No. 10. Pp. 884–888.
- Khairullina V. R., Gimadieva A. R., Gerchikov A. Ja., Mustafin A. G., Zaarudii F. S. Quantitative structure-activity relationship of the thymidylate synthase inhibitors of Mus musculus in the series of quinazolin-4-one and quinazolin-4-imine derivatives // J. Mol. Graphics Modell. 2018. Vol. 85. Pp. 198–211.
- Zakharov A. V., Lagunin A. A., Filimonov D. A., Poroikov V. V. Quantitative prediction of antitarget interaction profiles for chemical compounds // Chemical Research in Toxicology. 2012. Vol. 25. No 11. Pp. 2378–2385.
- Таипов И. А., Хайруллина В. Р., Герчиков А. Я., Хома В. К., Зарйдий Ф. С., Бегель Х. Виртуальный скрининг в ряду эффективных ингибиторов каталитической активности лейкотриен А4-гидролазы // Вестник БашГУ. 2012. Т. 17. №2. С. 886–891.
- Хайруллина В. Р., Герчиков А. Я., Зарудий Ф. С. Анализ взаимосвязи «структура-ингибирующая активность циклооксигеназы-2» в ряду производных ди-трет-бутилфенола, тиазолона и оксазолона // Вестник БашГУ. 2014. Т. 19. №2. С. 417–422.
- Хайруллина В. Р., Герчиков А. Я., Лагунин А. А., Зарудий Ф. С. Количественный анализ взаимосвязи «структура-активность» ингибиторов циклооксигеназы-2 среди производных тетрагидро-2H-изоиндола // Биохимия. 2015. Т. 80, №1. С. 96–110.

- Lagunin A., Zakharov A., Filimonov D., Poroikov V. QSAR Modelling of Rat Acute Toxicity on the Basis of PASS Prediction // Molecular Informatics. 2011. Vol. 30. №2–3. P. 241–250.
- Filimonov D. A., Zakharov A. V., Lagunin A. A., Poroikov V. V. QNA based "Star Track" QSAR approach // SAR and QSAR in Environmental Research. 2009. Vol. 20. No. 7–8. Pp. 679–709.
- Masanda V. H., Mahajana D. T., Patil K. N., Dawale N. E., Hadda T. B., Alafeefy A. A., Chinchkhede K. D. General Unrestricted Structure Activity Relationships based evaluation of quinoxaline derivatives as potential influenza NS1A protein inhibitors // Der PharmaChemica. 2011. Vol. 3. No. 4. Pp. 517–525.
- Roy K., Mitra I., Kar S., Ojha P. K., Das R. N., Kabir H. Comparative Studies on Some Metrics for External Validation of QSPR Models // Journal of Chemical Information and Modeling. 2012. Vol. 52. Pp. 396–408.
- Денисов Е. Т., Денисова Т. Г. Реакционная способность природных фенолов. // Успехи химии. 2009. Т. 78. №11. С. 1129–1152.
- Roy P. P., Paul S., Mitra I., Roy K. On Two Novel Parameters for Validation of Predictive QSAR Models // J. Molecules. 2009. Vol. 14. Pp. 1660–1701.
- Roy K., Das R. N., Ambure P., Aher R. B. Be aware of error measures. Further studies on validation of predictive QSAR models // Chemometrics and Intelligent Laborary Systems. 2016. Vol. 152. Pp. 18–33.
- Zakharov A. V., Peach M. L., Sitzmann M., Nicklaus M. C. A New Approach to Radial basis function approximation and Its application to QSAR // Journal of Chemical Information and Modeling. 2014. Vol. 54. Pp. 713–719.
- Xternal Validation Plus. URL: https://sites.google.com/ site/dtclabxvplus/
- Dearden J. C., Cronin M.T.D., Kaiser K.L.E. How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR) // SAR and QSAR in Environmental Research. 2009. Vol. 20. No. 3–4. Pp. 241–266.

Поступила в редакцию 20.08.2019 г.

DOI: 10.33184/bulletin-bsu-2019.3.6

QSAR-MODELING OF THE RELATIONSHIP "STRUCTURE – ANTIOXIDATIVE ACTIVITY" IN A SERIES OF SOME BENZOPIRANE AND BENZOFURANE DERIVATIVES

© Yu. Z. Martynova², V. R. Khairullina²*, G. G. Garifullina², D. S. Mitsukova², F. S. Zarudiy¹, A. G. Mustafin²

¹Bashkir State Medical University 3 Lenin Street, 450000 Ufa, Republic of Bashkortostan, Russia.

²Bashkir State University 32 Zaki Validi Street, 450076 Ufa, Republic of Bashkortostan, Russia.

*Email: veronika1979@yandex.ru

Using the computer program GUSAR 2013 (General Unrestricted Structure Activity Relationships), the quantitative relationship "structure – antioxidant activity (AOA)" was studied in a series of 64 benzopyran and benzofuran derivatives with the general structural formulas I – II.

Nine statistically significant valid consensus models characterized by high prediction accuracy of the lgk7 parameter for the structures of training and test samples were constructed. AOA of the modeled compounds was in the range of values $lgk_7 = 0.00 \div 7.06$. The descriptive and predictive ability of these models was evaluated on the structures of three training and two test samples with sliding controls with 20 times randomized exception of 20% of compounds. As statistical criteria for assessing the validity of the models M1–M9, the coefficients of determination $(R^2_{0}, Q^2(_{F1}), Q^2(_{F2}), \overline{R}^2_{mTSi})$, CCC) and the mean absolute error (MAE) were used. For their calculation, the XternalValidationPlus 1.2 program was used. This program showed the absence of a systematic error in the construction of all the regression dependencies M1–M9, which indicates the universality of the descriptors embedded n the GUSAR 2013 program, as well as the correctness of the regression models based on them. Thus, QSAR M1–M9 models can be successfully used for virtual screening of libraries and various databases in order to rationally search for potential anti-oxidants in them.

Keywords: antioxidant activity, antioxidants, QSAR modeling, GUSAR 2013 program, MNA and QNA descriptors.

Published in Russian. Do not hesitate to contact us at bulletin_bsu@mail.ru if you need translation of the article.

REFERENCES

- 1. Kirschweng B., Tátraaljai D., Földes E., Pukanszky B. J. Polym. Degrad. Stab. 2017. Pp. 1-66.
- 2. Nimse S. B., Pal D. J. RSC Adv. 2015. Vol. 5. Pp. 27986–28006.
- 3. Valantina R. S., Neelamegam P. Int. Food. Res. J. 2015. Vol 22. Pp. 289–294.
- 4. Apak R., Özyürek M., Guclu K., Capanoglu E. J. Agric. Food. Chem. 2016. Vol. 64. No. 5. Pp. 997–1027.
- 5. Pisoschi A. M., Negulescu G. P. J. Biochem. Anal. Biochem. 2015. Vol. 1. No. 1. Pp, 1–10.
- 6. Prior R. L., Wu X., Schaich K. J. Agric. Food. Chem. 2005. Vol. 53. Pp. 4290–4302.
- 7. Sánchez-Moreno S. J. Food. Sci. Technol. Int. 2002. Vol. 8. No. 3. Pp. 121-137.
- 8. Khasanov V. V., Ryzhova G. L., Mal'tseva E. V. Khimiya rastitel'nogo syr'ya. 2004. No. 3. Pp. 63-75.
- Denisov E. T., Afanas'ev I. B. Organic Chemistry. Oxidation and Antioxidants in Organic Chemstry and Biology / E. T. Denisov and I. B. Afanas'ev, eds., Boca Raton: CRC Press, 2005. Pp. 992.

- 10. Denisov E. T., Denisova T. G. E. T. Denisov and T. G. Denisova, eds., Boca Raton: CRC Press, 1999. Pp. 312.
- Khairullina V. R., Gerchikov A. Ya., Akhmetkhanov R. M., Gabitov I. T., Minniyanova R. T., Safarova A. B., Chukchieva I. Yu., Kuchin A. V. Russ. J. Appl. Chem. 2012. Vol. 85. No. 3. Pp. 401–406.
- 12. Bendary E., Francis R. R., Ali H.M.G., Sarwat M. I., El Hady S. J. Ann. Agric. Sci. 2013. Vol. 58. No. 2. Pp. 173-181.
- 13. Amić D., Lučić B. J. Bioorg. Med. Chem. 2010. Vol. 18. No. 1. Pp. 28-35.
- 14. Amic D. J. Curr. Med. Chem. 2007. Vol. 14. No. 7. Pp. 827-845.
- 15. Amić A., Marković Z., Klein E., Marković M.D., Milenković D. J. Food Chem. 2018. Vol. 246. Pp. 481-489.
- 16. Anouar E. J. Antiox. 2014. Vol. 3. No. 2. Pp. 309–322.
- 17. Lakkadi A., Vuppala S., Tigulla P. J. Pharmacy 2013. Vol. 2. No. 9. Pp. 148-152.
- 18. Iuga C. J. Org. Chem. 2012. Vol. 77. No. 8. Pp. 3868-3877.
- 19. Khairullina V. R., Gerchikov A. Ja., Lagunin A. A., Zarudii F. S. Pharm. Chem. J. 2018. Vol. 51. No. 10. Pp. 884–888.
- Khairullina V. R., Gimadieva A. R., Gerchikov A. Ja., Mustafin A. G., Zaarudii F. S. J. Mol. Graphics Modell. 2018. Vol. 85. Pp. 198– 211.
- Zakharov A. V., Lagunin A. A., Filimonov D. A., Poroi-kov V. V. Chemical Research in Toxicology. 2012. Vol. 25. No 11. Pp. 2378– 2385.
- 22. Taipov I. A., Khairullina V. R., Gerchikov A. Ya., Khoma V. K., Zaridii F. S., Begel' Kh. Vestnik BashGU. 2012. Vol. 17. No. 2. Pp. 886–891.
- 23. Khairullina V. R., Gerchikov A. Ya., Zarudii F. S. Vestnik BashGU. 2014. Vol. 19. No. 2. Pp. 417-422.
- 24. Khairullina V. R., Gerchikov A. Ya., Lagunin A. A., Zarudii F. S. Biokhimiya. 2015. Vol. 80, No. 1. Pp. 96–110.
- 25. Lagunin A., Zakharov A., Filimonov D., Poroikov V. Molecular Informatics. 2011. Vol. 30. No. 2–3. Pp. 241–250.
- Filimonov D. A., Zakharov A. V., Lagunin A. A., Poroi-kov V. V. SAR and QSAR in Environmental Research. 2009. Vol. 20. No. 7–8. Pp. 679–709.
- Masanda V. H., Mahajana D. T., Patil K. N., Dawale N. E., Hadda T. B., Alafeefy A. A., Chinchkhede K. D. Der PharmaChemica. 2011. Vol. 3. No. 4. Pp. 517–525.
- 28. Roy K., Mitra I., Kar S., Ojha P. K., Das R. N., Kabir H. Journal of Chemical Information and Modeling. 2012. Vol. 52. Pp. 396-408.
- 29. Denisov E. T., Denisova T. G. Uspekhi khimii. 2009. Vol. 78. No. 11. Pp. 1129–1152.
- 30. Roy P. P., Paul S., Mitra I., Roy K. J. Molecules. 2009. Vol. 14. Pp. 1660-1701.
- 31. Roy K., Das R. N., Ambure P., Aher R. B. Chemometrics and Intelligent Laborary Systems. 2016. Vol. 152. Pp. 18–33.
- 32. Zakharov A. V., Peach M. L., Sitzmann M., Nicklaus M. C. Journal of Chemical Information and Modeling. 2014. Vol. 54. Pp. 713–719.
- 33. Xternal Validation Plus. URL: https://sites.google.com/site/dtclabxvplus/
- 34. Dearden J. C., Cronin M.T.D., Kaiser K.L.E. SAR and QSAR in Environmental Research. 2009. Vol. 20. No. 3-4. Pp. 241-266.

Received 20.08.2019.