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Abstract—The problem of the first Lyapunov quantity constructing on the Andronov–Hopf bi-
furcation problem in infinite-dimensional dynamical systems is considered. A general scheme of
obtaining new formulas for the Lyapunov quantity in terms of the original equations is proposed.
The “reaction–diffusion” equation in a limited region and in a situation when there are no flows
of reacting components across the boundary of the region is considered as the main object of
research. For this equation, the Andronov–Hopf bifurcation conditions in the vicinity of a spatially
homogeneous equilibrium point are obtained, necessary conditions for the stability of emerging
solutions are specified. New formulas for the first Lyapunov quantities and transcriticity indices
of the problem, leading to algorithms for constructing these quantities are proposed. The specifics
of these formulas are indicated in the situation when the nonlinearity begins with cubic terms. The
proposed formulas make it possible not only to efficiently calculate the Lyapunov quantities, but
also to conduct a study of the properties of bifurcations in reaction–diffusion systems under new
conditions.
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1. PROBLEM STATEMENT

A key role in the bifurcation theory of dynamical systems and its applications is played by so-called
Lyapunov quantities allowing one to determine important properties of bifurcations like the stability of
emerging solutions, the direction of bifurcations, the stability properties of a weak focus, etc. There
is a series of approaches allowing one to calculate the Lyapunov quantities in problems with various
bifurcation scenarios (see, for instance, [1–5] and the references therein). These approaches are aimed
at studying bifurcations in finite-dimensional dynamical systems. When passing to the problems of
bifurcations in infinite-dimensional dynamical systems, a preliminary substantial transformation of the
initial equations based on the theorem of central manifold is required [6].

Proposed in [7] operator approach allows calculating Lyapunov quantities in problems on the main
bifurcation scenarios for finite-dimensional dynamical systems. This approach allows one to obtain
new formulas for Lyapunov quantities in terms of the original equations. This article is devoted to
the development of this approach for the Andronov–Hopf bifurcation problem in infinite-dimensional
dynamical systems. It offers a general scheme that allows one to obtain new formulas for Lyapunov
quantities in this problem in terms of the original equations. Proposed formulas allow not only to
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calculate Lyapunov quantities efficiently, but also to conduct a study of the properties of bifurcation
under new conditions.

The ”reaction–diffusion” equation is considered as the main object of research. The systems leading
to such an equation find numerous applications in chemistry, biology, geology, physics, ecology, etc. As
a rule, such systems depend on various parameters, that naturally leads to questions about stability and
bifurcations. The general literature is devoted to the study of corresponding problems (see, for instance,
[6, 8–16]).

We consider the ”reaction–diffusion” system described by the differential equation

dw

dt
= A(μ)w +K(μ)Δw + h(w,μ), (1)

where w = w(x, y) =

⎡
⎣u(x, y)
v(x, y)

⎤
⎦ , A(μ) = [aij(μ)], K(μ) = [kij(μ)] square real matrices of order 2,

smoothly depending on the scalar parameter μ, in this case, kij(μ) > 0; K(μ) is the diffusion matrix;
nonlinearity h(w,μ) begins with quadratic in w terms, it is represented as

h(w,μ) = h2(w,μ) + h3(w,μ) + ... (2)

in which h2(w,μ) involves quadratic in w terms, h3(w,μ) involves cubic terms etc. Finally, Δ is the

Laplace operator: Δ =
∂2

∂x2
+

∂2

∂y2
.

Equation (1) is studied on a rectangle

Ω = {(x, y) : 0 � x � 2π, 0 � y � 2π} (3)

with Neumann boundary conditions

∂w

∂n

∣∣∣∣
∂Ω

= 0; (4)

where ∂Ω is rectangle Ω border. The solution of the problem (1), (4) is called a function w(x, y; t) that
satisfies equation (1) and boundary conditions (4) for all t and (x, y) ∈ Ω.

By L2(Ω) we denote common Hilbert space of vector functions w(x, y) defined in Ω. Further, by
C(Ω) and C2(Ω) we denote respectively the space of continuous and the space of doubly continuously
differentiable functions on Ω. For w(x, y) ∈ C2(Ω) we denote norm

||w||2 =

⎛
⎝∫

Ω

Σ
|α|�2

||Dαw||2dxdy

⎞
⎠

1/2

, (5)

where Dα is differentiation operator: Dα =
∂|α|

∂xα1∂yα2
, |α| = α1 + α2; || · || is the Euclidean norm in R2.

Finally by W 2
2 (Ω) we denote the Sobolev space, which is a completion of the space C2(Ω) by norm (5).

We also define the set

C2
0 (Ω) =

{
w ∈ C2 :

∂w

∂n

∣∣∣∣
∂Ω

= 0

}
. (6)

According to the standard theory (see, for instance, [18]) the Laplace operator Δ : C2 → C can be
extended to a closed self-adjoint operator Δ0 : L2 → L2 with the domain G, formed by the closure in
W 2

2 of set (6). The domain G of operator Δ0 becomes Banach space if the norm (5) is introduced in
it. In this Banach space the operator Δ0 is bounded. Accordingly, the linear operator Δ0 : W

2
2 → W 2

2
with the domain G is bounded. The equation (1) has a zero solution w ≡ 0. In this paper we study the
problem of the Andronov–Hopf bifurcation in the neighborhood of this solution. The main attention is
paid to finding sufficient conditions for this bifurcation, as well as to the construction of corresponding
Lyapunov quantities.
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2. THE ANDRONOV–HOPF BIFURCATION SIGNS
The Andronov–Hopf bifurcation means the occurrence of non-stationary periodic solutions ω(x, y,

t, μ) of small amplitude of the equation (1) when parameter μ passes through some critical quantity μ0

in the the neighborhood of the point w = 0.
Bifurcating solutions ω(x, y, t, μ) of equation (1) at small |μ− μ0| arise usually in one of three cases:

(S1) μ > μ0; (S2) μ < μ0; (S3) μ = μ0. The latter case is called degenerate; it is typical, for example,
for linear systems. The first two cases occur when a certain condition of non-degeneracy with respect
to nonlinearity (2) is met. If this condition is met in the cases of (S1) and (S2) each μ corresponds
to exactly one non-zero periodic solution ω(x, y, t, μ) of small amplitude, and the function ω(x, y, t, μ)
smoothly depends on μ and there is a relation: max

t,(x,y)∈Ω
||ω(x, y, t, μ)|| → 0 when μ → μ0. Finally, the

period T (μ) of solutions ω(x, y, t, μ) also smoothly depends on μ and there is a relation: T (μ) → T0

when μ → μ0; the quantity of T0 will be discussed below.
We present statements regarding sufficient conditions under which the Andronov–Hopf bifurcation

takes place. Let’s define the functions
ϕ(μ) = trA(μ), ψ(μ) = detA(μ). (7)

Theorem 1. Let ϕ(μ0) = 0, ϕ′(μ0) �= 0 and ψ(μ0) > 0. Then μ0 is the Andronov–Hopf bifurca-
tion point of the problem (1), (4).

Let us now give a more general statement. For this purpose, for integers m,n we define the matrices

Bmn(μ) = A(μ)− (m2 + n2)K(μ) (8)

and functions
ϕmn(μ) = trBmn(μ), ψmn(μ) = detBmn(μ). (9)

Theorem 2. Let for some integers m0, n0 the relations ϕm0n0(μ0) = 0, ϕ′
m0n0

(μ0) �= 0 and
ψm0n0(μ0) > 0 hold. Then μ0 is the Andronov–Hopf bifurcation point of the problem (1), (4).

Obviously, when m0 = n0 = 0, Theorem 2 turns into Theorem 1.

2.1. Proof of Theorem 2
Note first that system (1) generates (see, for instance, [6]) a smooth local half-stream Ft(w) on G.

The differential DwFt(0) is a compact semigroup with an infinitesimal generator
S(μ) = A(μ) +K(μ)Δ. (10)

Next, we give the necessary condition that the quantity of μ0 be the Andronov–Hopf bifurcation point of
the problem (1), (4). Such is the requirement that the linear bounded operator S(μ0) : W

2
2 → W 2

2 (with
the domain G) had a pair of purely imaginary eigenvalues.

In this regard, we note that the next statement is true.
Lemma 1. The set of eigenvalues of the operator S(μ) : W 2

2 → W 2
2 coincides with the set of all

eigenvalues of all matrices (8).
In other words, each eigenvalue λ of the operator S(μ) is an eigenvalue of the matrix (8) for some

integers m,n. Conversely, the eigenvalues of all matrices (8) are the eigenvalues of the operator S(μ).
The proof of Lemma 1 is based on the fact that, first, the eigenfunctions of the operator Δ0 : W

2
2 →

W 2
2 (with the domain G) are nonzero vector functions of the form

w(x, y) =

⎡
⎣a
b

⎤
⎦ cos (mx) cos (ny) (a, bare real numbers), (11)

which correspond to the eigenvalues λmn = −m2 − n2. Second, the non-zero function (11) is also the

eigenfunction for operator S(μ) : W 2
2 → W 2

2 , if the vector

⎡
⎣a
b

⎤
⎦ is the eigenvector of the matrix (8).

Due to Lemma 1, the necessary condition for the Andronov–Hopf bifurcation of the problem (1), (4)
hold if, for some m and n, the matrix (8) for μ = μ0 has a pair of purely imaginary eigenvalues. And this
fact follows from the assumption thatϕm0n0(μ0) = 0 and ψm0n0(μ0) > 0. As for the sufficient bifurcation
condition, it is a consequence of the assumption ϕ′

m0n0
(μ0) �= 0. The Theorem 2 is proved.
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3. ON THE STABILITY OF BIFURCATION SOLUTIONS

Let the assumptions of Theorem 2 hold. Then the bifurcating solutions ω(x, y, t, μ) of equation (1)
are obviously unstable if the operator S(μ0) : W

2
2 → W 2

2 has at least one eigenvalue with a positive
real part. Therefore (due to Lemma 1), a natural necessary condition for these solutions to be stable is
the requirement that the eigenvalues of the matrices (8) for μ = μ0 and all m �= m0 and n �= n0 have
negative real parts. In this regard, we note that such requirement hold only if m0 = n0 = 0, i.e. under
the assumptions of Theorem 1. Namely, the following theorem is true.

Theorem 3. Let m2
0 + n2

0 � 1. Then the bifurcating solutions ω(x, y, t, μ) of equation (1) arising
under the assumptions of the Theorem 2, are unstable.

To prove this theorem, it is sufficient to note that if m2
0 + n2

0 � 1 Х ϕm0n0(μ0) = trBm0n0(μ0) = 0,
then ϕ00(μ0) = trA(μ0) > 0. And this (due to Lemma 1) means that the operator S(μ0) : W

2
2 → W 2

2
has an eigenvalue with a positive real part. Thus, the bifurcating solutions ω(x, y, t, μ) of equation (1)
can be stable only under the conditions of Theorem 1. Lets give he corresponding statement.

For this purpose we note that under the assumptions of Theorem 1, the matrix A(μ0) has a pair of
purely imaginary eigenvalues ±ω0i, where ω0 =

√
detA(μ0).

Below we assume that the elements aij(μ) and kij(μ) of matrices A(μ) and K(μ) for μ = μ0 satisfy
the assumption

detA+ (m2 + n2)2 detK > (m2 + n2)(a11k22 + a22k11 − a12k21 − a21k12) (12)

uniformly in all m and n.
Lemma 2. Let the assumption (12) hold under the assumptions of theorem 1. Then all different

from ±ω0i eigenvalues of operator S(μ0) : W
2
2 → W 2

2 have negative real parts.
Due to Lemma 1, to prove this statement it is sufficient to show that under its assumptions all

eigenvalues of all matrices (8) different from ±ω0i for μ = μ0 have negative real parts. Analysis of
characteristic equations of matrices (8) shows that the assumption (12) ensures that this fact hold.

4. ON LYAPUNOV QUANTITIES AND TRANSCRITICITY INDICES

The so-called bifurcation formulas play an important role in the theory of bifurcations of dynamical
systems and its applications. This term combines formulas that allow us to obtain numerical char-
acteristics, the knowledge of which allows us to conduct a qualitative analysis of various bifurcation
scenarios. The bifurcation formulas can, in particular, include Lyapunov quantities and transcriticity
indices. Bifurcation formulas have become particularly popular when studying the Andronov–Hopf
bifurcation in finite-dimensional dynamic systems. Here the knowledge of the first Lyapunov quantity
L1 and the transcriticity index γ1 allows us to determine the direction of bifurcations and the stability of
emerging solutions (see, for instance, [1–4]).

Analogs of the first Lyapunov quantity L1 and the transcriticity index γ1 for the Andronov–Hopf
bifurcation problem of the equation (1) under the assumptions of Theorem 1 are given below.

Under the assumptions of theorem 1, the matrix A0 = A(μ0) has a pair of purely imaginary
eigenvalues ±ω0i, where ω0 =

√
detA(μ0). Therefore, there exist nonzero vectors e, g, e∗, g∗ ∈ R2

satisfying equalities

A0(e+ ig) = iω0(e+ ig), A∗
0(e

∗ + ig∗) = −iω0(e
∗ + ig∗); (13)

here A∗
0 is a transposed matrix. The vectors e, g, e∗, g∗ can be considered normalized according to the

equalities

(e, e∗) = (g, g∗) = 1, (e, g∗) = (g, e∗) = 0. (14)

Let

e(t) = e cos 2πt− g sin 2πt. (15)

Below we also need the following auxiliary designation. Let y(t) be a continuous periodic (period 1)
vector function. By yc and ys, we denote corresponding cos 2πt and sin 2πt Fourier coefficients of this
function.
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4.1. The Case of Cubic Nonlinearity

Let us first consider the case when the nonlinearity (2) begins with cubic terms, i.e. let

h(w,μ) = h3(w,μ) + ... (16)

Let

L1 =
1

2
[(yc, e

∗)− (ys, g
∗)]; (17)

here y(t) = h3(e(t), μ0).
Theorem 4. Let, under the assumptions of Theorem 1, the nonlinearity h(w,μ) be represented

as (16). Then the number L1, defined by equality (17), is the first Lyapunov quantity in the
problem on the Andronov–Hopf bifurcation for equation (1).

In this theorem, the phrase that‘... the number L1 ... is the first Lyapunov quantity... should be
understood in the sense that the number L1 expresses the same properties of the Andronov–Hopf
bifurcation for the equation (1), what is the first Lyapunov quantity of the Andronov–Hopf bifurcation
in the classical sense, i.e. for differential equations in finite-dimensional phase spaces. This issue is
discussed in more detail below.

The validity of the Theorem 4, as well as other theorems given below, can be established according to
the same scheme that was used in proving similar statements in [7].

4.2. General Case

Let us now consider the question of calculating the first Lyapunov quantity in the general situation
when the nonlinearity (2) begins with quadratic terms. Denote by E0 a two-dimensional subspace
of the space W 2

2 containing the vectors e and g. It is a proper subspace of the operator S0 = S(μ0),
corresponding to the simple eigenvalues ±iω0.

The space W 2
2 can be represented as W 2

2 = E0 ⊕E0, where E0 is an additional subspace invariant for
S0. The equality W 2

2 = E0 ⊕E0 defines projectors P0 : W
2
2 → E0 and P 0 : W 2

2 → E0 so that P 0 = I −
P0. Since the operator S0 : W

2
2 → W 2

2 is bounded, the bounded linear operator B0 = eT0S0 : W 2
2 → W 2

2

is defined; here T0 = 2π/ω0, ω0 =
√

detA(μ0). By construction the operator I −B0 + P0 : W
2
2 → W 2

2
invertible.

Next, we define a vector and a matrix

ρ2 =

1∫
0

e(1−t)T0S0h2(e(t), μ0)dt, B2 =

1∫
0

e(1−t)T0S0F2(t)dt, (18)

where e(t) is function (15), and F2(t) defined as F2(t) = T0h
′
2w(e(t), μ0)e

T0S0t. Note that by construc-
tion, the inclusion ρ2 ∈ E0 holds. Finally, let

y(t) = g(t) + f3(t), (19)

where

g(t) = F2(t)(I −B0 + P0)
−1ρ2, (20)

f3(t) = h3(e(t), μ0) + F2(t)

t∫
0

e−τT0S0h2(e(τ), μ0)dτ. (21)

Theorem 5. Under the assumptions of Theorem 1, the first Lyapunov quantity L1 in the
problem on the Andronov–Hopf bifurcation for the equation (1) is defined by the equality

L1 =
1

2
[(yc, e

∗)− (ys, g
∗)]; (22)

here y(t) is function (19).

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 42 No. 15 2021



3572 ABUSHAHMINA et al.

4.3. On Transcriticity Indices

Let us assume that under the assumptions of Theorem 1 we have L1 �= 0. Let

γ1 = ϕ′(μ0)L1. (23)

Theorem 6. Let γ1 > 0 (γ1 < 0). Then existing under the assumptions of Theorem 1 bifurcation
solutions ω(x, y, t, μ) of equations (1) exist when μ < μ0 (μ > μ0).

Theorem 7. For all small |μ− μ0| bifurcation solutions ω(x, y, t, μ) of equation (1) existing
under the assumptions of Theorem 1 are asymptotically orbitally stable if L1 < 0; they are
unstable if L1 > 0.

Defined by equation (23) the number γ1 we call the transcriticity index in the problem of the
Andronov–Hopf bifurcation for the equation (1), referring to the fact that the number (23) expresses
the same properties of the Andronov–Hopf bifurcation for the equation (1), as the rate of transcriticity
index for the Andronov–Hopf bifurcation in the classical sense (see [2, 3, 9]).

5. EXAMPLE

Consider a reaction-diffusion system of the form (see, for instance, [1]){
∂u
∂t = (μ − 1)u+ a2v + k11Δu+ k12Δv + u2v,
∂v
∂t = −μu− a2v + k21Δu+ k22Δv − u2v,

(24)

where kij = kij(μ) � 0, Δ is the Laplace operator. The system (24) is a system of type (1). We study
this system on a rectangle (3) with boundary conditions (4).

The matrix A(μ) in the equation (24) has the form A(μ) =

⎡
⎣μ− 1 a2

−μ −a2

⎤
⎦ . Since ϕ(μ) = trA(μ) =

μ− 1− a2 and detA(μ) = a2, when μ = μ0 = a2 + 1 for the equation (24) the assumptions of the
Theorem 1 hold. Therefore, the value μ = μ0 = a2 + 1 is the Andronov–Hopf bifurcation point for the
equation (24).

Let’s define the first Lyapunov quantity L1 and the transcriticity index γ1. To do this, taking into
account the fact that the nonlinearity in the (24) system is cubic, we use the formulas (17) and (23).

Matrix A0 = A(μ0) has a pair of purely imaginary eigenvalues ±ia. The vectors e, g, e∗, g∗ ∈ R2

satisfying the equalities (13) and (14) for ω0 = a can be chosen as

e =

⎡
⎣0
1

⎤
⎦ , g =

⎡
⎣−a

a

⎤
⎦ , e∗ =

⎡
⎣1
1

⎤
⎦ , g∗ =

⎡
⎣−1/a

0

⎤
⎦ .

The function (15) and the nonlinearity (16) here take the form

e(t) =

⎡
⎣ a sin 2πt

cos 2πt− a sin 2πt

⎤
⎦ , h3(w,μ) =

⎡
⎣ u2v

−u2v

⎤
⎦ .

Thus

h3(e(t), μ0) =
1

4
(a2 cos 2πt− 3a3 sin 2πt− a2 cos 6πt+ a2 sin 6πt)

⎡
⎣ 1

−1

⎤
⎦ .

Select the corresponding cos 2πt and sin 2πt Fourier coefficients of this function:

yc =
1

4
a2

⎡
⎣ 1

−1

⎤
⎦ , ys = −3

4
a3

⎡
⎣ 1

−1

⎤
⎦ .
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Thus, according to the formulas (17) and (23) the first Lyapunov quantity and the transcriticity index
become

L1 = −3

8
a2, γ1 = −3

8
a2.

Based on the Theorems 6 and 7 the following conclusions can be drawn. First, bifurcation solutions
ω(x, y, t, μ) of equation (24) arise when μ > μ0. Second, for all small |μ− μ0|, these solutions are
asymptotically orbitally stable.
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