DOI: 10.24060/2076-3093-2020-10-3-198-204
Аннотация:Введение. В настоящее время наблюдается широкое внедрение компьютерных технологий в медицину. Медицинская нейроинформатика позволяет анализировать задачи диагностики и прогнозирования различных заболеваний с помощью нейросетей. Актуальность применения искусственных нейронных сетей объясняется их востребованностью и практичностью в использовании.
Материалы и методы. На наш взгляд, наглядным примером возможности изучения вопросов прогнозирования течения заболевания является рожистое воспаление. В данной работе произведена обработка данных ретроспективного исследования историй болезней пациентов, получавших стационарное лечение на базе ГБУЗ РБ ГКБ № 8 г. Уфы в период 2006–2015 гг. для решения задачи прогнозирования рожистого воспаления с использованием современных статистических пакетов программ и среды моделирования MATLAB.
Результаты и обсуждение. Результаты сравнительного анализа показали, что в качестве архитектуры нейросети наиболее целесообразно выбрать 3-слойную рекуррентную сеть прямого распространения. В рассматриваемом случае оптимальная структура нейросети имеет вид: 27–6–1 (т.е. используется 27 нейронов на входе, 6 — в скрытом слое, 1 нейрон в выходном слое). Наилучшая сходимость процесса обучения сети обеспечивается при использовании квазиньютоновского алгоритма и алгоритма сопряженных градиентов. При оценке эффективности нейросетевого прогнозирования динамики развития рожистого воспаления был осуществлен сравнительный анализ с рядом классических методов: экспоненциального сглаживания, скользящего среднего, метода наименьших квадратов, метода группового учета аргумента.
Заключение.Применение предложенных в работе нейросетевых методов прогнозирования динамики развития рожистой патологии, основанного на аппроксимации и экстраполяции процессов изменения анамнеза пациента на фиксированных отрезках временного окна (в пределах «скользящего временного окна»), позволяет эффективно решать задачи прогнозирования.
Права: CC BY 4.0
DOI: 10.24060/2076-3093-2020-10-3-198-204
Abstract:Introduction.In recent years, computer technologies are more and more widely used in medicine. Thus, medical neuro‑ informatics solves diagnostic and forecasting tasks using neural networks.
Materials and methods. Using the example of erysipelas, the possibility of forecasting the course and outcome of the dis‑ ease is demonstrated. A retrospective study of the medical histories of patients treated for erysipelas at the Ufa Clinical Hospital No.8 during 2006–2015 was carried out. Modern statistical packages and the MATLAB environment were used.
Results and discussion.The conducted comparative analysis showed a 3-layer recurring network of direct distribution to be the most suitable neural network architecture. The optimal structure of the neural network was found to be: 27–6–1 (i.e. 27 neurons are used at the entrance; 6 — in a hidden layer; 1 — in the output layer). The best convergence of the network learning process is provided by the quasi-Newton and conjugated gradient algorithms. In order to assess the effectiveness of the proposed neural network in predicting the dynamics of inflammation, a comparative analysis was carried out using a number of conventional methods, such as exponential smoothing, moving average, least squares and group data handling.
Conclusion.The proposed neural network based on approximation and extrapolation of variations in the patient’s medi‑ cal history over fixed time window segments (within the ‘sliding time window’) can be successfully used for forecasting the development and outcome of erysipelas.
Права: CC BY 4.0