ОПУХОЛЕВЫЙ РОСТ И ВОЗМОЖНОСТИ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ СИСТЕМНЫХ ПРОЦЕССОВ

Дата публикации: 2019

DOI: 10.14498/vsgtu1661

Аннотация:

В работе обсуждаются вопросы применения математического моделирования к исследованию процесса опухолевого роста и проблеме оптимизации лечения онкологических заболеваний. Приводится структурированный обзор работ отечественных и зарубежных авторов, посвященных этой проблематике. Обсуждается важность представлений о жизненном цикле клетки в понимании опухолевого процесса и механизмов лечения онкологических заболеваний, связанная прежде всего с тем, что применяемые методы лечения, в частности, химиотерапия и лучевая терапия, действуют как на нормальные, так и на опухолевые клетки, находящиеся в определенных стадиях жизненного цикла, и не поражают клетки в других стадиях. Приводится описание жизненного цикла клетки и механизмов, в норме обеспечивающих сохранение и восстановление нормальной плотности клеточной популяции, приводится граф стадий и переходов клетки. Предлагается математическая модель поддержания пролиферативного гомеостаза в клеточной популяции, которая учитывает гетерогенность клеточных популяций по стадиям жизненного цикла. Модель представляет собой систему дифференциальных уравнений с запаздыванием. Условия стационарности позволяют определить значения параметров модели, присущих нормальной жизнедеятельности клеточной популяции. В работе приводятся результаты вычислительного эксперимента, в котором исследуется процесс восстановления плотности клеточной популяции в случае массовой гибели клеток. Как показывает эксперимент, после гибели клеток происходит восстановление плотности клеток в разных стадиях до нормальных значений, что соответствует представлениям о пролиферативном гомеостазе в клеточных популяциях.

Издатель: Самарский государственный технический университет (Самара)

Тип: Article



TUMOR GROWTH AND MATHEMATICAL MODELING OF SYSTEM PROCESSES

Publication date: 2019

DOI: 10.14498/vsgtu1661

Abstract:

The paper deals with applying mathematical modeling to study tumor growth process and optimizing cancer treatment. A structured review of the studies devoted to this problem is given. The role of the cell life cycle in understanding the tumor growth and the mechanisms of cancer treatment is discussed. It is important that modern cancer treatment methods, in particular, chemotherapy and radiation therapy, affect both normal and tumor cells in certain stages of the life cycle and do not influence on cells in other stages. Cell life cycle description is given as well as the mechanisms that maintain and restore normal density of the cell population. A graph of cell life cycle stages and transitions is demonstrated. Dynamic mathematical model of proliferative homeostasis in the cell population is proposed, which takes into account the heterogeneity of cell populations by life cycle stages. The model is a system of differential equations with delays. The stationary state of the model is investigated, which allows to determine the parameters values for the normal cell population. The results of a numeric experiment is obtained, which is focused on the process of cell population density recovery after mass death of cells. As the experiment shows, after cell death, the densities of cells in different life cycle stages are restored to normal values, which corresponds to the concepts of proliferative homeostasis in cell populations.

Издатель: Самарский государственный технический университет (Самара)

Тип: Article